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1. Introduction

The study of BPS states in a quantum field theory is of unquestionable importance. The

purpose of this note is to discuss the set of all mesonic BPS gauge invariant operators (GIO)

with two supercharges which appear in the chiral ring of a generic N = 1 supersymmetric

gauge theory that lives on a D3-brane which probes a singular Calabi Yau (CY) manifold.1

For arbitrary singularities, finding the gauge theory living on the D3-brane is intricate. The

simplest class is the orbifolds, the study of which began with [2 – 8]. The next simplest class

is the toric singularities, the investigation of which was initiated by [8 – 11]. Interesting

duality structures of these theories have been expounded in [12 – 15]. It is recently realised

that the toric theories are, in fact, best described using a bi-partite periodic tiling of

the two dimensional plane, a so-called “dimer model” [16 – 28] (also cf. [29, 30] for recent

mathematical treatments).

When the manifold is non-orbifold and non-toric there is no current systematic way

of describing the gauge theory even though some examples exist in the literature. For

example, the higher del Pezzo series [31] and certain deformations of toric singularities [27]

have been addressed. In this paper we will see how one can describe the single- and multi-

trace operators in terms of generating functions which can be computed for both toric and

non-toric manifolds. In fact, the computations we will see can calculate the generating

functions even for cases in which the gauge theory is not precisely known - either the

superpotential is missing or even the quiver itself is not known.

The discussion on GIO’s in the chiral ring can be divided into few parts as follows.

Given a gauge theory description of the theory on the D-brane, there are several problems

of interest:

Global U(1) charges. One would like first to identify the set of global U(1) charges of

this theory. One charge out of this set is singled out to be the R-charge and the other

charges can be generically called global non-R charges. The most useful way of thinking

about these charges is by introducing the holographically dual gravity description. A set

of D3-branes on a singular conical CY is holographically dual to an AdS5 ×Y5 background

where Y5 is a Sasaki Einstein (SE) manifold (cf. [32] and references therein). The global

charges of the gauge theory are dual to gauge fields in AdS5. These gauge fields can be

divided into two sets – one set originates from the Type IIB metric, those are typically

referred to as the isometry of the SE manifold, and the other set comes from the Type

1Some preliminary results were annouced in [1].
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IIB 4-form. The R-charge is always part of the isometry group of the SE manifold. The

traditional name which was given to the charges coming from the metric are flavor charges

and those which come from the 4-form are called baryonic charges.

The isometry group of the SE manifold has a maximum rank of 3, in which case the

SE manifold and its CY cone are called toric; the minimum rank is 1, in which case the

corresponding U(1) charge is precisely the R-charge. The number of baryonic charges is in

principle unbounded and is given by the third homology of the SE manifold. Most cases

which were studied in the literature have one baryonic symmetry, the prototypical example

being the conifold [33]. Currently there are extensive studies of cases with more than one

baryonic charge, the simplest being the Suspended Pinch Point (SPP) [9, 18, 34], as well

as the more complicated Xp,q family [50].

Counting gauge invariant operators. Given the set of U(1) symmetries, R, flavor,

baryonic, etc., say, n of them, each gauge invariant operator in the chiral ring carries a set

of charges under these symmetries. We will assign a generic complex variable ti, i = 1 . . . n

to each such charge and define a function f({ti}) to be the generating function of all these

operators. This function f has, by definition, an expansion in terms of monomials in {ti}
such that the coefficient, ck1,...,kn

of tk1
1 · · · tkn

n is integer and counts the number of operators

of charges (k1, . . . , kn),

f({ti}) =
∑

i1,...,ik

ck1,...,kn
tk1
1 . . . tkn

n . (1.1)

Our goal is to compute such functions for a multitude of cases.

Our ultimate wish is that for any CY manifold we would like to know

1. The set of single-trace BPS operators, the generating function is denoted by f ;

2. The set of multi-trace BPS operators, the generating function is denoted by g;

3. For N D3-branes at the singular CY we would like to know the dependence on N .

Namely, we would like to know how many independent single-trace and multi-trace

operators are there in the chiral ring for a given set of charges. For a finite N this

turns out to be a much more difficult task since there are matrix relations for a finite

size matrix that need to be taken into account. Nevertheless, we propose a nice

solution to this as well; the generating functions in this case will be denoted as fN

for single-trace and gN for multi-trace.

As will be discussed in detail in later sections there is an important function which

beautifully relates the single-trace generating function and the multi-trace. Namely, gN can

be simply computed from fN using the so-called “plethystic exponential.” This function has

been used in physics several times in the past and we believe it should go into the literature

more often as it plays a crucial role in counting problems such as the one dealt with here.2

Conversely one can use the so-called “plethystic logarithm” which is the inverse function to

the plethystic exponential and computes fN from gN . The ability to switch between f and

2A. H. would like to thank Marcos Mariño for demonstrating the properties of this function [53].
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g will turn out to be a key tool in analyzing the theories we are interested in and to reveal

new pieces of information which were either previously unknown or alternatively not well

discussed.

Having presented a host of functions and concepts, it would be most expedient to

exemplify them in a context with which the readers are well-acquainted. We shall do so

for the famous D3-brane theory on C
3 in the next section. Having whetted the readers’

appetites, the plan for the remainder of the paper is as follows. We begin with the large N

limit and present the solution to questions (1) and (2) above. In section 3, we show how

to construct f , the generating function for single-trace GIO’s. This is a Hilbert-Poincaré

counting problem. We exemplify with orbifolds, toric varieties and the del Pezzo family.

We take an interlude in section 4 and examine this counting problem using the graphical

perspectives of dimers. Then, in section 5, we construct the generating function g, which

count the multi-trace GIO’s. The relationship between f and g will turn out to be a

plethystic one. In due course, we will show how plethystics actually encode not only the

GIO’s counting, but also the defining equation of the singularity. Interesting partition

identities as well as syzygies in graded polynomial rings emerge. Having constructed the

generating functions, we then calculate the asymptotic behaviour thereof in section 6,

using results from combinatorics and analytic number theory. Finally, we use the above

formalism to address the more difficult problem of finite N in section 7 and show how

plethstics again solves the counting problem and how they encode the geometry. We

conclude with perspectives in section 8.

2. C3: an illustrative example

As promised in the introduction, we begin with a familiar example to illustrate the various

generating functions. Here, the computation can be done without using the more general

techniques which will follow in the rest of the paper. This example is of course for the

archetypal example of the AdS/CFT correspondence, the case in which the CY manifold is

trivially C
3 and its associated SE manifold, S5 [35]. There are no baryonic charges in this

case since the third homology of S5 is trivial and the isometry group is SU(4) with rank

3, meaning that this CY manifold is actually toric and the number of U(1) charges is 3.

We can thus define 3 corresponding variables, t1, t2, t3, which will then measure these three

U(1) charges in their powers, as explained above. The gauge theory is the N = 4 gauge

theory with U(N) gauge group which in N = 1 language has 3 adjoint chiral multiplets

which we will denote as x, y and z. Being toric, this CY manifold admits a description in

terms of periodic bi-partite tilings of the two dimensional plane and in fact is given by the

simplest of them all - tilings by regular hexagons [17].

We are interested in operators in the chiral ring and therefore we need to impose the

F-term relations coming from the superpotential W = Tr(x[y, z]). The F-terms hence take

a particularly simple form: [x, y] = [y, z] = [z, x] = 0, i.e., all chiral adjoint fields commute.

The generic single-trace GIO in the chiral ring will then take the form of Tr(xiyjzk). It is

then natural to assign t1 as counting the number of x fields, t2, the number of y fields and

t3, the number of z fields in a GIO. There will therefore be a corresponding monomial ti1t
j
2t

k
3
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for each gauge invariant of charges i, j, and k, respectively. In fact, there will be precisely

one for each triple of charges, provided each of i, j, and k are non-negative. Putting all of

this together, we find that the generating function f takes the form

f(t1, t2, t3; C
3) =

∞∑

i=0

∞∑

j=0

∞∑

k=0

ti1t
j
2t

k
3 =

1

(1 − t1)(1 − t2)(1 − t3)
. (2.1)

To be more precise, in the above form we did not take into account any relations that a

finite matrix should satisfy, therefore, as mentioned earlier, this result is strictly valid for

the case of N = ∞. Therefore, using the notation introduced above we should write

f∞(t1, t2, t3; C
3) =

1

(1 − t1)(1 − t2)(1 − t3)
. (2.2)

A general feature for toric CY. Note that in eq. (2.2) the coefficients cijk appearing

in the general expansion

f∞(t1, t2, t3) =
∑

ijk

cijkt
i
1t

j
2t

k
3 (2.3)

are all equal to either 1 or 0. This means that for a given set of charges, i, j, k, there is

either one operator carrying these charges or not, but there can not be more than one.

Indeed this is a generic feature which is obeyed for every toric singular CY. More explicitly

there is a one-to-one correspondence between single-trace GIOs and integer lattice points

in the dual cone of toric diagram [10, 27, 37]. This property is reminiscent of some kind

of a fermionic degree of freedom that carries this set of charges. In contrast, for the non-

toric case, it is shown in [27] that there are, in general, multiple-to-one mappings between

single-trace GIOs and given charges. The reason is clear. In the toric case, we have two

extra U(1) flavor symmetries besides the R-symmetry, which is big enough to distinguish

finely, while for non-toric case we do not have these extra symmetries.

Let us look at the set of charges i, j, k for which cijk are not zero. They form a

sub-lattice of the three dimensional lattice which has the form of a cone. Indeed, this

sub-lattice is the so-called “positive octant” for which i ≥ 0, j ≥ 0, k ≥ 0. This feature

of a cone structure will also be general for every CY manifold, the form of this cone is

interesting and will be discussed in detail in section 4. One can think of the function f∞
as a theta-function over the lattice points of the cone and is a characteristic function of

this cone. It is worth to notice that from results in [27], it seems that there is a lattice

structure for both toric and non-toric cases. The difference is that for the toric case the

lattice is 3-dimensional while for non-toric case the dimension is lower.

If on the other hand we are interested in counting the number of BPS operators which

carry a given fixed scaling dimension, say Tr(xiyjzk) of dimension i+ j + k = 3
2R, we need

to set t1 = t2 = t3 = t in eq. (2.2) and get the generating function for all operators. In

other words, we have to forget the other two U(1) flavor symmetries and use the fact that

all variables x, y, z have same R-charge 2
3 . Hence,

f∞(t; C
3) =

1

(1 − t)3
=

∞∑

m=0

(
m + 2

2

)
tm (2.4)
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and the number of GIO’s of given R-charge R = 2
3m is

(
m+2

2

)
, corresponding to the com-

pletely symmetric rank m representation of SU(3) that acts on x, y, and z in the funda-

mental representation.

Single-trace and multi-trace at N → ∞. Having studied f∞, let us now look at

the function f1, generating the single-trace operators for the case of one D3-brane on C
3.

Clearly, the adjoint fields x, y, and z are complex variables and not matrices and therefore

any product of two or more of these matrices is a multi-trace operator. As a result, there

are only 4 single-trace operators in this case: the identity operator, x, y, and z. We can

therefore use their representation in terms of ti, i = 1, 2, 3, sum them and write:

f1(t1, t2, t3) = 1 + t1 + t2 + t3. (2.5)

Next, we notice an interesting relation between g1 and f∞. Let us look at the set of

operators of the form Tr(xiyjzk) for the case in which the number of D3-branes is N → ∞.

Each such operator is represented by the monomial ti1t
j
2t

k
3 and can be thought of as a

multi-trace operator for the case of the number of D3-branes being N = 1. This implies

that g1, the generating function for multi-trace operators for one D3-brane is equal to f∞,

the generating function for single-trace operators for infinitely many D3 branes,

g1 = f∞ . (2.6)

Can we now find some functional dependence between f1 and g1? Combining expres-

sions eq. (2.6), eq. (2.5) and eq. (2.2), we have

g1(t1, t2, t3) =
1

(1 − t1)(1 − t2)(1 − t3)
= exp[− log(1 − t1) − log(1 − t2) − log(1 − t3)]

= exp

( ∞∑

r=1

tr1 + tr2 + tr3
r

)
= exp

( ∞∑

r=1

f1(t
r
1, t

r
2, t

r
3) − 1

r

)
. (2.7)

The last relation

g1(t1, t2, t3) = exp

( ∞∑

r=1

f1(t
r
1, t

r
2, t

r
3) − 1

r

)
= f∞(t1, t2, t3) (2.8)

turns out to be a key relation and is satisfied for any CY manifold, toric or otherwise.

The function g1 is then said to be the plethystic exponential of f1. This relation in fact

generalizes to any N and we find that gN is the plethystic exponential of fN . We will

discuss this extensively in section 5 and section 7.

We are now ready to write down the expression for the generating function g∞ of

multi-trace BPS GIO’s in the chiral ring in the N = 4 theory, corresponding to N → ∞
D3-branes on C

3. It is again, the plethystic exponential, this time of f∞ in eq. (2.2):

g∞(t1, t2, t3) = exp

( ∞∑

r=1

f∞(tr1, t
r
2, t

r
3) − 1

r

)
= exp

( ∞∑

r=1

1
(1−tr1)(1−tr2)(1−tr3) − 1

r

)
. (2.9)
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Note that g∞ has an expansion

g∞(t1, t2, t3) =
∑

ijk

dijkt
i
1t

j
2t

k
3 , (2.10)

where the coefficients dijk are non-zero precisely when the coefficients cijk of f∞ are non-

zero. However, while cijk can be at most 1, dijk has a very fast growth and in fact grows

exponentially. It is therefore a problem of interest to find what is the large charge behavior

of dijk. We see that the multiplicity of BPS states for fixed R charge, R = 2
3k, is

g∞(t, t, t) = exp

( ∞∑

r=1

1
(1−tr)3 − 1

r

)
=

∞∑

k=0

dkt
k . (2.11)

We will present in section 6 detailed discussions of how to obtain dk for large k.

Single-trace and multi-trace at finite N . For finite N , the situation is in general

much more involved. Nevertheless, the multi-trace result gN can be obtained from fN by

plethystics. We will present the systematic treatment for arbitrary singularities in section 7.

3. Counting gauge invariants: Poincaré series and single-trace

Having stated our problem and enticed the reader with the example of C
3, we are now ready

to attack the general CY singularity. Our strategy will be to first examine the simpler case

of N → ∞ and then the more involved case of finite N .

Beginning with the large N situation, we first find the generating function f for the

single-trace GIO’s. Then, in section 5, we will show how the plethystic exponential (PE),

extracts g, the generating function for the multi-trace GIO’s, from f . Indeed, because the

multi-trace GIO’s are composed of products of the single-trace ones, PE is expected to be a

version of counting integer-partitions. We would like to emphasize that the counting auto-

matically encodes more than merely the matter content, but, furtively, the superpotential

as well. In other words, we will be concerned with a true counting of the GIO’s with the

F-term constraints automatically built in. We will check in all examples below that this is

indeed so by showing that the moduli space is explicitly the CY 3-fold, as is required in

D-brane probe theories.

How, then, do we compute f given the geometrical data of the CY? It turns out that

we could appeal to some known methods in mathematics. In projective algebraic geometry,

an important problem is to count the number of generators of graded pieces of polynomial

rings, the generating functions of this type are called Hilbert-Poincaré series.

We shall borrow this terminology and refer to the function f for the single-trace GIO’s

as the Poincaré series for the associated N = 1 gauge theory; it shall soon be seen that this

appropriation is a conducive one. In this section, we proceed stepwise along the various

known classes of CY singularities which the D3-brane can probe. We start with orbifolds

and see the Poincaré series in the mathematical sense is precisely what is needed. Next, we

address toric CY singularities; here, using the techniques of (p, q)-webs and 2-dimensional

tilings (dimers), we construct f from the toric diagram. Then, we proceed to the del Pezzo

family of singularities.

– 7 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
0

3.1 Orbifolds and Molien series

Given a finite group, it is a classical problem to find the generators of the ring of polynomial

invariants under the group action. The theory matured under E. Nöther and T. Molien

(cf. e.g. [38]). In our quiver gauge theory, the single-trace GIO’s are polynomial combina-

tions of fields which are invariant under the group action. Because we are assuming large

N , no extra relations arise beside these from the F-terms, and the problem of computing f

reduces to simply counting the number of algebraically independent polynomials one could

construct of degree n that are invariant under the group. The problem is a mathematical

one and was solved by Molien; the Poincaré series is named Molien series in his honour.

Let us be concrete and specialise to the orbifolds of our concern, viz., 3-dimensional

CY orbifolds C
3/G, with G a discrete finite subgroup of SU(3). Such singularities were

first classified by [39] and the D-brane quiver theories, constructed in [6]. Let G act on the

coordinates (x, y, z) of C
3. Then, the question is: how many algebraically3 independent

polynomials are there of total degree n in (x, y, z). The Molien series is given by

M(t;G) =
1

|G|
∑

g∈G

1

det(I − tg)
=

∞∑

i=0

bit
i , (3.1)

we tabulate the results in table 2, where the determinant is taken over the 3 × 3 matrix

representation of the group elements. Upon series expansion, the coefficients bi give the

number of independent polynomials in degree i. Hence, the f we seek is simply M(t;G).

We can remark one thing immediately. In eq. (3.1) there is only one variable t instead

of (x, y, z) in our example C
3. The reason is that for orbifold theories which descend from

the N = 4 parent every elementary field has R-charge 2/3. The replacement x, y, z → t

tells us that eq. (3.1) counts the single-trace GIO for given R-charge. Indeed, as a first

check, take G = I, the trivial group. We immediately find that

M(t; I) =
1

det(I − tI)
=

1

(1 − t)3
= 1 + 3 t + 6 t2 + 10 t3 + 15 t4 + 21 t5 + O(t6) , (3.2)

which agrees with eq. (2.2) for the C
3 theory if one set ti = t. Thus, the Molien series counts

invariants of total degree in x, y, z whereas eq. (2.2) counts the degree of the three variables

individually. In the next subsection, we shall refine the Molien series by straight-forwardly

generalising the dummy variable t to a triple (t1,2,3).

Emboldened by this check, let us go on to a non-trivial example, the binary dihedral

group D̂4 of 8 elements. This is a subgroup of SU(2) ⊂ SU(3) and is a member of the ADE-

series of CY two-fold (K3) singularities (cf. [40]). We can think of this as a C
3 orbifold

with one coordinate, say z, held fixed. The gauge theory is the well-known N = 2 D-type

quiver (q.v. [3 – 6]).

This group is generated (we use the standard notation that 〈x1, . . . , xn〉 is the finite

group generated by the list of matrices xi) as

D̂4 = 〈
(
−i 0

0 i

)
,

(
0 i

i 0

)
〉 , (3.3)

3In fact linearly independent, because any polynomial relation would change the total degree. Finding

the polynomial relations is a important one and will be subsequently addressed.
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degree invariant polynomials

4 x2y2, 1
2 (x4 + y4)

6 1
2xy(x4 − y4)

8 x4y4, 1
2x2y2(x4 + y4), 1

2(x8 + y8)

Table 1: Invariants of the binary dihedral group.

acting on (x, y) ∈ C
2. We can readily compute the Molien series to be

M(t, D̂4) =
1

8

(
6

1 + t2
+

1

1 − 2 t + t2
+

1

1 + 2 t + t2

)
(3.4)

= 1 + 2 t4 + t6 + 3 t8 + 2 t10 + 4 t12 + 3 t14 + 5 t16 + 4 t18 + 6 t20 + O(t22) .

This dictates that there are two invariants at degree 4, one at degree 6, etc.

Now, one can actually determine the invariants explicitly, which gives us another check.

First, an important theorem due to Nöther states that (cf. e.g. [38]):

Theorem 1. The polynomial ring of invariants is finitely generated and the degree of the

generators is bounded by |G|.

Therefore, though the Molien series is infinite, with increasingly more invariants arising

at successive degree with them being linearly independent at each total degree, there will

be highly non-trivial algebraic relations amongst the ones at different degree. The power

of theorem 1 is that one needs to find invariants at most up to degree equal to the order

of the group; all higher degree invariants are polynomials in these basic ones.

Hence, we only need to find a finite number of invariants, which can be determined

explicitly due to an averaging technique of O. Reynolds (cf. e.g. [38]). Given any polynomial

F (x), one can define the so-called Reynolds operator

RG[F (x)] :=
1

|G|
∑

g∈G

F (g ◦ x) . (3.5)

Then, the polynomial RG[F (x)] is invariant by construction. We can then list all monomials

of a given degree, apply eq. (3.5) to each and obtain the invariants at the said degree; the

number thereof should agree with what eq. (3.1) predicts.

Applying the above discussion to our example of D̂4, we obtain the following invariant

polynomials for the first few degrees refer to table 1. We remark that there are no invariants

of lower degree (except trivially the identity) and that the number of independent invariants

indeed agree with the series expansion of eq. (3.4). Immediately, one sees some trivial

relations such as x4y4 = (x2y2)2. Using Gröbner basis algorithms [42], one can show that

the above ring of 6 invariants can be further reduced to 3. In other words, the ring of

invariant polynomials, C[x, y]D̂4 , is generated by 3 so-called primitive ones:

v =
1

2
(x4 + y4), w = x2y2, u =

1

2
xy(x4 − y4) . (3.6)
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G ⊂ SU(2) |G| Generators Equation Molien M(t;G)

Ân−1 n 〈
(

ωn 0

0 ω−1
n

)
〉 uv = wn (1+tn)

(1−t2)(1−tn)

D̂n+2 4n 〈
(

ω2n 0

0 ω−1
2n

)
,

(
0 i

i 0

)
〉 u2 + v2w = wn+1 (1+t2n+2)

(1−t4)(1−t2n)

Ê6 24 〈S, T 〉 u2 + v3 + w4 = 0
1−t4+t8

1−t4−t6+t10

Ê7 48 〈S,U〉 u2 + v3 + vw3 = 0 1−t6+t12

1−t6−t8+t14

Ê8 120 〈S, T, V 〉 u2 + v3 + w5 = 0 1+t2−t6−t8−t10+t14+t16

1+t2−t6−t8−t10−t12+t16+t18

Table 2: Molien series for the discrete finite subgroups of SU(2).

Finding relations among these polynomials is known as the syzygy problem and is,

again, a classical problem dating to at least Hilbert. The modern solution is, as above, to

use Gröbner bases. The reader is referred to [43] for a pedagogical application of syzygies

and Gröbner basis to N = 1 gauge theories and to [44] in the context of moduli stabilisation.

We will return to syzygies later in the paper. For the present example, we find the relation

v2w − w3 = u2 . (3.7)

This is a comforting result. Indeed, invariant theory tells us that

The defining equation of an orbifold is the syzygy of the primitive invariants.

We recognise eq. (3.7) as precisely the defining equation [40] for the affine variety C
2/D̂4.

3.1.1 ADE-series

For completeness, let us compute (making extensive use of [42, 45]) the Molien series for

the discrete subgroups of SU(2). We find that where we have defined ωn := e
2πi
n and

S :=
1

2

(
−1 + i −1 + i

1 + i −1 − i

)
, T :=

(
i 0

0 −i

)
,

U :=
1√
2

(
1 + i 0

0 1 − i

)
, V :=

(
i
2

1−
√

5
4 − i1+

√
5

4

−1−
√

5
4 − i1+

√
5

4 − i
2

)
. (3.8)

We have also used the identity

n−1∑

k=0

1

(1 − tωk
n)(1 − tω−k

n )
=

∞∑

j=0

∞∑

m=0

tj+mnδj,nZ = n

∞∑

m=0




∞∑

β=0

t2m+nβ +

∞∑

β=1

t2m−nβ




=
n

1 − t2

(
1

1 − tn
+

1

t−n − 1

)
.

(3.9)
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3.1.2 Valentiner: a non-abelian SU(3) example

Having warmed up with the 2-dimensional CY orbifolds, we are ready to study the proper

subgroups of SU(3) [6]. The simplest, most well-known, non-trivial, non-Abelian discrete

subgroup of SU(3) is perhaps the Valentiner group, otherwise known as ∆(3 · 32) (or,

sometimes known as the Heisenberg group for 3 elements, as recently studied in [41]),

defined as

∆(27) := 〈




ω3 0 0

0 1 0

0 0 ω−1
3


 ,




1 0 0

0 ω3 0

0 0 ω−1
3


 ,




0 1 0

0 0 1

1 0 0


〉 . (3.10)

Let us investigate this group in some detail; we shall return to this group later in the paper.

The Molien series is readily computed to be

M(t;∆(27)) =
−1 + t3 − t6

(−1 + t3)3
= 1 + 2 t3 + 4 t6 + 7 t9 + 11 t12 + 16 t15 + 22 t18 + · · · . (3.11)

To find the defining equation (syzygies), theorem 1 tells us that we need only go up

to degree 27 here, a total of 174 invariants, of degrees 0, 3, 6, . . . , 24, 27. Using Gröbner

techniques [42], we find that there are only 4 nontrivial generators for these 174 polynomials

(we have scaled the expressions by an over-all 3):

{m = 3xyz, n = x3 + y3 + z3, p = x6 + y6 + z6, q = x3y6 + x6z3 + y3z6} . (3.12)

We then find a single relation in C[m,n, p, q]:

8m6 + m3
(
−48n3 + 72n p + 72 q

)
+ 81

((
n2 − p

)3 − 4n
(
n2 − p

)
q + 8 q2

)
= 0 . (3.13)

Therefore, C
3/∆(27) is a complete intersection, given by a single (Calabi-Yau) hypersurface

in C
4.

3.2 Toric varieties

Having studied the first class of CY singularities, viz., the orbifolds, in some detail, let us

move onto the next, and recently much-revived, class of geometries, the toric singularities.

It turns out that here one can also write the Poincaré series f explicitly, now in terms of the

combinatorics of the given toric diagram D [37]. Mathematically, this is a nice extension

of the Molien series.

We first draw the graph dual4 of the triangulation of D; this is the (p, q)-web [46], a

skeleton of tri-valent vertices indexed by i ∈ V . At each vertex i, the j-th (for j = 1, 2, 3) of

the three coincident edges has charge ~aij with ~a a three-vector indexed by k, signifying the 3

charges. We remark that toric Calabi-Yau threefolds have three-dimensional toric diagrams

whose endpoints are co-planar and this is why D and the dual (p, q)-web are usually drawn

on the plane. Here, we need to restore the full coordinates of the 3-dimensional toric

4Incidentally, we remark that a convenient way of finding the dual (p, q)-web given a toric diagram is to

take, for each pair of toric points, their cross-product, which then gives a vector perpendicular to the plane

defined by the two said points.
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(0,0,1) (0,1,0)
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(0,0,1)

Figure 1: Toric diagram and (p, q)-web for C3.

diagram; whence, ~a has 3 components. With this notation, the Poincaré series for D is

(cf. eq. (7.24-5) of [37] and also [47] for interesting mathematical perspectives):

P (t1, t2, t3;D) =
∑

i∈V

3∏

j=1

1

1 − t
a1

ij

1 t
a2

ij

2 t
a3

ij

3

. (3.14)

Before we proceed, let us remark on the charges of coordinates t1, t2, t3. For toric

varieties, we have three U(1) global symmetries: one is R-charge and the other two, flavor

charges. In general, each coordinate ti is charged under all three U(1). For example,

the R-charge of t2 is given by the inner product of (0, 1, 0) and the Reeb vector VR =

(b1, b2, b3). We recall that in the AdS/CFT correspondence the U(1) R-symmetry is dual

to a special Killing vector, the so-called Reeb vector (cf. e.g. [32]), which can be expanded

as VR =
3∑

i=1
bi

∂
∂φi

, where φi are the coordinates parametrising the T 3-toric action. It is a

very important quantity in toric geometry.

It is possible to make coordinate transformation (t1, t2, t3) → (t̃1, t̃2, t̃3) such that each

coordinate t̃i is charged under one and only one U(1). However, the charges of these new

coordinates t̃i in general are not even rational numbers (for example the R-charge of dP2),

so it is not proper to use this new t̃i coordinate to do the Poincaré series expansion, which

must have integer powers. Furthermore, as we have seen in the example of C
3, sometimes

we want to find the generating function of only one U(1) charge, for example, the R-charge.

To do so, we merely make the substitution (t1, t2, t3) → (ta, tb, tc) for given a, b, c ∈ Z≥0

and the expression will be simplified considerably. In a lot of cases, the interesting U(1) is

a linear combination of all three U(1)’s as we will see shortly.

Returning to eq. (3.14), we have some immediate checks. First, we recall that all

Abelian orbifolds of C
3 (including C

3 itself) are toric. For example, the toric diagram for

C
3 is a triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1). The dual graph, i.e., the (p, q)-

web, has a single vertex, with three edges in the directions (1, 0, 0), (0, 1, 0) and (0, 0, 1)

respectively: Hence see figure 1.

P (t1, t2, t3; C
3) =

1

1 − t11t
0
2t

0
3

1

1 − t01t
1
2t

0
3

1

1 − t01t
0
2t

1
3

=
1

(1 − t1)(1 − t2)(1 − t3)
=

∑

i,j,k

ti1t
j
2t

k
3 . (3.15)

This is precisely the result eq. (2.2) obtained from conventional methods in section 2.

– 12 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
0

(1,−1,0)

A B

CD

(0,0,1) (1,0,1)

(1,1,1)(0,1,1)

Toric Diagram

Trianglization 2Trianglization 1

(p,q)−web 1
(p,q)−web 2

(0,−1,1)

(−1,0,1)

(1,0,0)

(0,1,0)

(−1,−1,1)

(1,1,−1)

(0,−1,1)

(1,0,0)

(−1,0,1)

(0,1,0)

(−1,1,0)

Figure 2: The toric data for the conifold C. There are two triangulations, related to by flops, and

thus two (p, q)-webs. We see in the text that they lead to the same counting.

For a less trivial example, take the conifold C (cf. [37] as well as an earlier result in [36]).

The toric diagram has 4 points, with coordinates

A = (0, 0, 1), B = (1, 0, 1), C = (1, 1, 1), D = (0, 1, 1) , (3.16)

as shown in the center of figure 2. There are two triangulations, giving two (p, q)-webs

upon dualising; the two are related by flop transitions. Of course, we need to prove the

counting is independent of such choices. Indeed, as the conifold is the building block

to all flops in toric varieties, if we show that f is the same for the two (p, q)-webs, this

would be true for all toric diagrams and thus we would be at liberty to make any choice

of (p, q)-web. First, take the left one, given by the two triangles ABD and BCD. This

gives us 2 vertices, with (p, q)-charges of, respectively, {(0, 1, 0), (1, 0, 0), (−1,−1, 1)} and

{(0,−1, 1), (−1, 0, 1), (1, 1,−1)}. Thus eq. (3.14) gives us

P (x, y, z; C) =
1

(
1 − x y

z

) (
1 − z

x

) (
1 − z

y

) +
1

(1 − x) (1 − y)
(
1 − z

x y

) . (3.17)

The second trianglization is given by ACD and ABC, giving us

1(
1 − x

y

)
(1 − y)

(
1 − z

x

) +
1

(1 − x)
(
1 − y

x

) (
1 − z

y

) . (3.18)

It is easy to see that the two expressions eq. (3.17) and eq. (3.18) are the same. Thus indeed

the generating function is independent of how we triangulate and how the dual (p, q)-web

is obtained [37].

3.2.1 Refinement: U(1)-charges and multi-degrees

We see from eq. (3.14) that for toric varieties the counting is more refined than the Molien

series eq. (3.1) as the latter only counts invariants of total-degree. There seems to be a

straight-forward generalisation. In order to get the number of single-trace GIO’s given the
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R-charge of each field, the Molien counting seems to be refinable to counting the number of

independent polynomials of a given multi-degree (i1, . . . , i3). This is done by generalising

the Molien series to:

M(t,G) =
1

|G|
∑

g∈G

1

det(I − diag(t1, . . . , tk) · g)
=

∑

i1,...,ik

bi1,...,ikti11 . . . tikk . (3.19)

The caveat is that now the coefficients bi1,...,ik are no longer guaranteed to be integers

for general groups. This corresponds to the fact that the invariants are not monomial

in general, but, rather, polynomial. For example, in eq. (1), at degree 6, there is a single

invariant, built of the sum of two monomials, of multi-degree (5, 1) and (1, 5), each of which

is not an invariant.

Therefore, this refinement only makes sense in case there is a corresponding conserved

charge associated with a U(1) that is part of the isometry of the CY manifold. The isometry

of C
3 is SU(4) with rank 3. There is thus a maximum of 3 charges corresponding to the

maximal subgroup of the isometry group of the CY manifold. If the manifold is toric then

there is a T 3 fibration and therefore a total of three U(1) charges and the index would be a

function of 3 variables. If the manifold is not toric then in many cases the isometry group

has a rank smaller than 3 and in most cases in fact is absent. Nevertheless there is at least

one charge, counting the R charge, that corresponds to the choice of complex structure of

the manifold.

To summarize, there are some cases in which the rank of the isometry group is 2 and

in most cases the rank is 1. All cases in which the rank is less than 3 are non-toric. An

example for a manifold with rank 2 is the set of complete intersection manifolds of the form

x2 + y2 + z2 + wk = 0. Is has a clear SO(3) isometry acting on the first 3 coordinates and

together with the natural degree of the variables form the isometry group SU(2) × U(1).

For the case k = 2 the isometry grows to SO(4)×U(1) and having rank 3 indeed confirms

that the manifold is toric - the familiar conifold. We will study this geometry again in

section 5.3.2.

An example of a manifold of rank 1 is any C
3-orbifold with a full non-abelian subgroup

Γ of SU(3). For Γ in SU(2), we still have N = 2 SUSY, so the global isometry is SU(2) ×
U(1), of rank 2. Indeed though there is no refinement for 3 charges, there should still be

a refinement of two charges since the rank is 2. The first charge will denote the Cartan

charge of the SU(2). We could, for example, define a degree which counts how many x’s

and y’s together, and another degree which counts how many z’s. This is the reason that

in trying to implement the refinement on D̂4 we found factors of 1/2. There is simply no

corresponding conserved charge which corresponds to this generalization.

3.2.2 The Y p,q family

An infinite family of toric CY 3-folds which has recently attracted much attention, because

of the discovery of explicit CY metric thereon, is the Y p,q’s (cf. e.g.,[48 – 50]). Let us now do

the counting for these. The toric data is given by O = (0, 0, 1), A = (1, 0, 1), B = (0, p, 1)

and C = (−1, p− q, 1). We have drawn it at the left hand side of figure 3. As indicated, we

take the trianglization as connecting the point Ta = (0, a, 1) to A and C with a = 1, . . . , p
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XpqYpq
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B

C
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C

O A(0,0,1) (1,0,1)

(−1,p−q,1)

(−1,p−q+1,1) D

B

Figure 3: The toric diagrams for the spaces Y p,q and Xp,q.

(so Tp = B). Now we have 2p triangles given by TaATa+1 and TaCTa+1, a = 0, . . . , p − 1.

For triangle TaATa+1 we have the following charges and corresponding term

{(1, 0, 0), (a, 1,−a), (−a−1,−1, a+1)} ⇒ 1

(1 − x)
(
1 − xa y

za

) (
1 − x−1−a z1+a

y

) . (3.20)

For triangle TaCTa+1 we have

{(−1, 0, 0), (−a + (p − q), 1,−a), ((q − p) + a + 1,−1, a + 1)} ⇒
1

(
1 − 1

x

) (
1 − x−a+p−q y

za

) (
1 − x1+a−p+q z1+a

y

) . (3.21)

Putting these together we have

f(x, y, q; Y p,q) =

p−1∑

a=0

1

(1 − x)
(
1 − xa y

za

) (
1 − x−1−a z1+a

y

) (3.22)

+
1

(
1 − 1

x

) (
1 − x−a+p−q y

za

) (
1 − x1+a−p+q z1+a

y

) .

Knowing Y p,q, it is easy to go on to Xp,q. It differs therefrom by the addition of one point

(−1, p− q + 1, 1) in the toric diagram. So we use the above trianglization of Y p,q, plus one

more triangle given by (0, p, 1), (−1, p − q + 1, 1) and (−1, p − q, 1). This one gives the

following vector and hence a new term to eq. (3.22):

{(1, 0, 1), (q − 1,−1, p), (−q, 1,−p)} ⇒ 1

(1 − x z)
(
1 − y

xq zp

) (
1 − x−1+q zp

y

) .
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3.3 The del Pezzo family

The last category of CY singularities widely studied in D-brane gauge theories is the cone

over the 9 del Pezzo surfaces. These surfaces are P
2 blown up at n generic points; the cone

is CY if n = 0, . . . , 8. There is a close cousin to this family, viz, the zeroth Hirzebruch

surface F0, which is simply P
1 × P

1 and the cone over which is also CY. It is well-known

that for dPn=0,1,2,3 and for F0, the space is actually toric (q.v. [11]). Therefore, we can use

eq. (3.14) to obtain the following:

P (z, x, y; dP0) =
1

(1−x)(1−y)
(
1− z

x y

)+
1

(
1− 1

x

)(
1− y

x

)(
1− x2 z

y

)+
1(

1− 1
y

)(
1− x

y

)(
1− y2 z

x

)

P (z, x, y;F0) =
1

(1−x)(1−y)
(
1− z

xy

)+
1

(
1− 1

x

)
(1−y)

(
1− xz

y

)+
1

(1−x)
(
1− 1

y

)(
1− yz

x

)

+
1

(
1− 1

x

)(
1− 1

y

)
(1−xyz)

P (z, x, y; dP1) =
1

(1−x)
(
1− y

x

)(
1− z

y

)+
1

(
1− 1

x

)
(1−y)

(
1− xz

y

)+
1

(1−x)
(
1− x

y

)(
1− yz

x2

)

+
1

(
1− 1

x

)(
1− 1

y

)
(1−xyz)

P (z, x, y; dP2) =
1(

1− x
y

)
(1−y)

(
1− z

x

) +
1

(1−x)
(
1− y

x

)(
1− z

y

)+
1

(
1− 1

x

)
(1−y)

(
1− xz

y

)+

+
1

(1−x)
(
1− 1

y

)(
1− yz

x

)+
1

(
1− 1

x

)(
1− 1

y

)
(1−xyz)

(3.23)

P (z, x, y; dP3) =
1(

1− 1
y

)
(1−xy)

(
1− z

x

)+
1(

1− 1
xy

)
(1−y)(1−xz)

+
1

(
1− 1

x

)
(1−xy)

(
1− z

y

)+

+
1

(1−x)(1−y)
(
1− z

x y

)+
1

(1−x)
(
1− 1

xy

)
(1−yz)

+
1

(
1− 1

x

)(
1− 1

y

)
(1−xyz)

.

We include toric diagrams and the dual (p, q)-webs here for reference in figure 4. For

completeness, we also include the data for F0 as well as PdP4, the so-called pseudo dP4

surface, first introduced in [51], which is obtained from blowing up a non-generic point of

dP3 so as to keep it a toric variety in figure 5.

3.3.1 A general formula for dPn

We can see that taking the limit x = y → 1 to relax the refinement in eq. (3.23) the

expressions become very simple. In other words, we neglect the two U(1) charges carried

by x, y and keep only the U(1) charge carried by t = z (note that this is not the R-charge

but a linear combination of the three U(1) charges). The result counts the single-trace
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O

A

B

C

A=(−1,−1,1) B=(1,0,1)

C=(0,1,1) O=(0,0,1)

P1

P2

P3
(−1,1,0)

(1,−1,0)

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(2,−1,1)

(−1,2,1)

P1

P2

P3

P4

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(−1,1,0)

(1,−1,0)

(0,1,0)

(0,−1,0)

(1,0,1)

(1,−1,1)

(−1,2,1)

(−1,−1,1)

(a) dP0 (b) dP1

(−1,1,1)

P1

P3

P4

P2
P5

(0,1,1)

(−1,1,0)
(1,0,1)

(1,−1,0)

(0,−1,0)

(0,1,0)

(1,−1,1)

(1,0,0)

(−1,0,0)

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(−1,−1,1)

(0,1,1)

P1

P3

P4

P2
P5

P6

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(1,1,−1)

(−1,−1,1)

(1,0,0)

(−1,0,0)
(1,−1,0)

(−1,1,0)

(0,−1,0)

(0,1,0)

(1,−1,1)

(1,0,1)

(0,−1,1)

(−1,0,1)

(−1,1,1)

(c) dP2 (d) dP3

Figure 4: Toric diagram and (p, q)-webs for cones over del Pezzo surfacess 0 to 3.

(0,−1,0)

(−1,1,−1) (1,1,−1)

P2P3

P4 P1

(−1,−1,−1) (1,−1,−1)
(−1,0,0) (1,0,0)

(0,−1,0)

(0,1,0)

(−1,0,0) (1,0,0)

(0,1,0)

(−1,1,1)

P1

P3

P4

P5

(0,−1,−1)

P6
(1,0,−1)

(0,1,−1)

P2

P7

(0,−1,−1)

(1,0,−1)

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(−1,0,−1)

(−1,1,−1)

(−1,1,0)

(1,−1,0)

(−1,−1,1)

(1,1,−1)

(0,1,0)

(0,−1,0)

(1,0,0)

(−1,0,0)

(1,−1,−1)

(a) F0 (b) PdP4

Figure 5: Toric diagram and (p, q)-webs for cones over the zeroth Hirzebruch surface and the

pseudo del Pezzo 4 surface.

GIO’s of a given total degree:

f(t; dP0) =
1 + 7t + t2

(1 − t)3
, f(t; dP1) = f(t;F0) =

1 + 6t + t2

(1 − t)3
, (3.24)

f(t; dP2) =
1 + 5t + t2

(1 − t)3
, f(t; dP3) =

1 + 4t + t2

(1 − t)3
. (3.25)
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We shall see in the next section what it means to set x, y to 1 and how all this relates

to projecting 3-dimensional toric diagrams to 2-dimensions and to dimers. For the mean

time, observing the pattern eq. (3.24) for the above 4 members of the del Pezzo family, we

propose the following general expression for the generating function:

f(t)(n) := f∞(t; dPn) =
1 + (7 − n)t + t2

(1 − t)3
, n = 0, . . . , 8 . (3.26)

We remark that the result for F0 is the same as dP1. This is not surprising because they

both, when having 1 more generic point blown-up, become dP2. Also, dP0 is a Calabi-Yau

over P
2, it is in fact simply the orbifold C

3/Z3 which we will encounter again in section 5.1.2.

Furthermore, setting n = 4 gives agreement with the recent (P )dP4 [51] result of eq. 5.29

of [27]. Indeed, we shall revisit the del Pezzo family, and give full credence to eq. (3.26) in

section 5.3.1.

4. Dimers, toric diagrams and projections

By now we have seen the Poincaré series f∞ in full action in counting single-trace GIO’s.

Before proceeding to finding the generating function g∞ for the multi-trace case, let us

take a brief but important interlude in how the counting in f is pictorially realised for toric

varieties. In due course, we shall see how the invariants emerge in slices of the 3-dimensional

toric cones and how such projections relate to dimers and 2-dimensional tilings. Indeed,

it is these observations which initiated our original interest in this problem of counting

GIO’s.

4.1 Example: dimers and lattices for C
3

We begin by discussing the simplest toric CY 3-fold, C
3, which was first mentioned in

section 2 and then in section 3.2. Let us see how to represent the chiral ring in the dimer

diagram of C
3. The dimer for C

3 is well-known [16] and is drawn in figure 6. There is

only one gauge group and it is represented by a hexagon. We recall the fundamental fact

that in a dimer, the polygonal faces correspond to gauge groups, edges, (perpendicular) to

fields and nodes, to superpotential terms. Thus, a BPS GIO in the chiral ring 5 can be

thought of as a path from the origin to a polygon, and we shall show below that it is in fact

path-independent. Since we consider only chiral operators, we represent the (holomorphic)

operator by oriented lines crossing edges, such that when a line crosses an edge, the black

vertex is to its left (recall that the coloring convention in a dimer has orientation built in).

There are three holomorphic fields denoted by X,Y,Z. As mentioned before, the F -term

relations here make these three operators mutually commutative.

Now, we discuss the chiral GIO’s in detail. We shall do so according to the number of

levels. Here, we define level to mean the number of X,Y,Z fields inside the chiral operators.

This was what we meant by degree in the aforementioned generating function. For clarity,

we have enclosed each level with a dotted red circle in the diagram. At level 1, there are

5Since we are studying BPS mesons, we may emphasize the relationship between the concept of the

“extremal BPS meson” (introduced in [28]) and that of the “zig-zag path” in [21, 22, 24].

– 18 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
0

Lattice of Chiral GIO at Level One 

X

YZ
X

ZY

Y

X

Z

Level one dimer with (anti)−chiral fields

(1,0,0)

(0,1,0) (0,0,1)

X

Y Z

Level Two Lattice

X

X

YZ

Z

XZ

YZ

XY

YZ

XY

Y

XZ

XX

YY
ZZ

XY XZ

YZ

ZZ

XX

YY

XZ
XY

YZ

XX ZZ

YY

(2,0,0)

(0,2,0) (0,0,2)

(0,1,1)

(1,1,0) (1,0,1)

X

Y Z

Level Two Dimer

Level Three Dimer 

X

Y

Y

Z

XXX

YYY ZZZ

Y
XYZ

XXZ
XXY

YYX

ZZY

ZZX

YYZ

X

Y Z

(3,0,0)

(2,1,0) (2,0,1)

(1,2,0) (1,0,2)

(0,3,0) (0,0,3)

(0,2,1) (0,1,2)

(1,1,1)

Level  Three Lattice

Figure 6: The Dimer configurations and the lattice structure of GIO’s for C3, exhibited at the

first 3 levels. We have drawn some mixed chiral-antichiral GIO’s as well for illustration, but the

ones of our concern, viz., the chiral ones, are drawn in blue.

only 3, given by Tr(X), Tr(Y ) and Tr(Z). This has been shown in level one of figure 6.

In the figure we have given also the 3 anti-chiral operators Tr(X̄), Tr(Ȳ ) and Tr(Z̄) for

reference. Henceforth, we shall use blue to denote the GIO’s in which we are interested,

viz., the chiral single-traces ones. The 3 here, of course, correspond to the 3t term in

eq. (3.2).

Next, let us move to level 2 of figure 6. This time, we can cross two edges, as shown

by the second red circle. A few remarks are at hand. First, for the hexagon denoted by

the blue XY (which is inside the chiral ring), we have two paths to reach from the center.

One is from the center to hexagon Y Z then to XY . Another one is from the center to XZ

then to XY . The key point is that these two paths give the same element Tr(XY ) in the

chiral ring. So, our first conclusion is that for the chiral ring, a GIO depends only on the

starting and ending point of the path in the dimer model and does not depend on the path

itself. This in fact is generic for every dimer model and not just for the simple hexagonal

model discussed here. See [21, 24, 28] for a proof of this point.

Furthermore, we have in fact drawn not only the chiral ring, but also the anti-chiral

ring and the mixed chiral-antichiral operators6 at level 2. For the mixed operators, it is

6We remark that the mixed operators are protected only in N = 4 because of enhanced SUSY, in generic

N = 1 theories the “protected rings” are only the chiral or antichiral ones. The other 1/2-BPS protected
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easy to see that now the path in the dimer does matter. We start from the center, go up

and then go down and get X̄X. Similarly we can go southwest to get Ȳ Y and southeast to

get Z̄Z. This means that we should put all three X̄X, Ȳ Y and Z̄Z in the center hexagon.

In another word, the one-to-one correspondence we found for chiral or anti-chiral ring is

lost. Because of this complexity we will not discuss mixed operators further in this paper

(the anti-chiral ring is isomorphic to the chiral ring and need not be addressed separately).

Focusing on only the chiral ring we can see that there are 6 (chiral) GIO’s at level 2,

corresponding to the term 6t2 in eq. (3.2). Also, The result of level 3 is given at the right

of figure 6. Here, we give only the chiral ring operators at proper hexagons in this figure.

There is a total of 10 as shown, corresponding to the 10t3 in eq. (3.2).

4.1.1 Lattice structure and planar slices

We thus conclude that:

A (chiral) GIO’s at level n corresponds to a polygon in the dimer, which is a

chiral-distance n away from the center.

In the above, a chiral-distance is measured by segments of only chiral operators, i.e., black

vertices to the left. We have drawn these chiral GIO’s in blue in figure 6. With this one-

to-one correspondence between chiral GIO’s at a given level and hexagons in the dimer

diagram, we can see that in fact we have a lattice structure in R
3. Each integer lattice

point (a, b, c) with a, b, c ≥ 0 corresponds to a chiral operator. The level of this operator

is given by (a + b + c). In other words, level n is given by the plane perpendicular to

vector (1, 1, 1) and has distance n from the origin. It is interesting to notice that the vector

(1, 1, 1) is the Reeb vector of C
3. Thus the degree we are counting is exactly the R-charge.

We have drawn these plane slices for each level in our figure as well in figure 6.

This lattice is something with which we are familiar! It is nothing other than the dual

toric cone for C
3. Indeed, the definition of a toric variety is that it is the affine spectrum

of the ring of monomials obtained from raising the coordinates to the powers of the lattice

generators, i.e., the invariant monomials. This is what we are doing above. Level 1 gives

the monomials which are obtained from the lattice generators of the cone; level 2 gives the

monomials obtained from the toric cone intersected with the (non-primitive) lattice points

one further step away, etc.

4.2 Example: dimers and lattices for the conifold

Next, let us discuss the conifold. Here, we will see explicitly how we must count the GIO’s

up to relations from F-terms, as was mentioned in the introduction. The toric diagram

was given in figure 2 in section 3.2. The dimer model is the brane diamond [52] drawn on

T 2 [16] and is given in figure 7. There are two gauge groups so there will be two types

of polygons which are labeled 1 and 2. It is easy to see that we can locate these 2 gauge

groups at lattice points. More explicitly, if we draw the lifting of T 2 in R
2, we can identify

an integer lattice point (a, b) to gauge group 1 if a, b are integers or gauge group 2 if a, b are

operators like the currents do not form a ring.
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(a)
B1

2 2

2 2

A1

A2

B2

Lattic structure

2 2

22

2

Dimer Model and Four chiral fields

2 2

2

1

1

1

1

1

1

11

1

1

1

1

1

(b)

Level  Zero

M(−1,0) = M(0,1) M(0,−1)M(0,1) M(0,1)

M(0,1) M(0,1) M(1,0)

M(1,0) M(−1,0) = M(0,1) M(0,−1)

M(0,−1) M(0,−1)

M(0,1) M(0,1)

M(−1,0)M(−1,0) M(1,0) M(1,0)

M(0,1) M(−1,0) M(0,1) M(1,0)

M(0,−1) M(0,−1)M(−1,0) M(1,0)

M(0,1)

M(0,−1)

M(1,0)

M(−1,0)I

Level  ThreeLevel  TwoLevel  One

M(1,0)

Figure 7: (a) The dimer configuration for the conifold and the dual lattice structure of GIO’s; (b)

In more detail, the actual operators (with built-in relations) corresponding to the lattice points at

the first 3 levels.

half-integers. Now, since we are considering the single-trace mesonic GIO’s, we can neglect

gauge group 2 and consider the holomorphic paths connecting different lattice points of

gauge group 1, i.e., integer lattice points in 2-dimensions.

In this gauge theory, there are four bi-fundamental fields A1, A2 and B1, B2. We define

the following operators which are in the adjoint representation of gauge group 1:

M0,1 = A1B1, M1,0 = A1B2, M−1,0 = A2B1, M0,−1 = A2B2 . (4.1)

It is easy to check that the F -term relations tell us that all four Mij commute and obey

one non-trivial relation:

M0,1M0,−1 = M1,0M−1,0 . (4.2)

We can map the above quantities into the dimer model. As we have shown above,

the dimer model can be mapped to a 2-dimensional integer lattice. The operator M0,1 can

be mapped to vector (0, 1) so we can use it to connect points (0, 0) and (0, 1). Similarly,

M1,0,M−1,0,M0,−1 map to vectors (1, 0), (−1, 0), (0,−1), respectively. Using this mapping,

a single-trace GIO is mapped to a path connecting point (0, 0) to (a, b) using the above

four vectors. The non-trivial relation eq. (4.2) is nothing, but the statement that after
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following consecutively vectors (0, 1) and (0,−1) (or (1, 0) and (−1, 0)) we come back to

the starting point.

Using this picture we can see the lattice structure of holomorphic GIO’s. For level 0, it

is the origin (0, 0) and corresponds to the identity operator. For level one, we can use only

one Mi,j to connect (0, 0) to nearby lattice points. Thus we have four of them Tr(M1,0),

Tr(M−1,0), Tr(M0,1), and Tr(M0,−1). For level two, we need to use two Mi,j operators. It

is easy to get to lattice points (±2, 0), (±1,±1) as well as (0, 0). For (0, 0) we have two

ways Tr(M(0, 1)M(0,−1)) or Tr(M(1, 0)M(−1, 0)). But by relation eq. (4.2) they are the

same so we should count only once. Similarly we can draw the level three lattice diagram

as shown in figure 7.

4.2.1 Planar slices and lattices

Now let us find the 3-dimensional box which projects to the above 2-dimensional picture.

The vectors (0, 0, 1), (1, 0, 1), (0, 1, 1) and (1, 1, 1) of the toric diagram of C generates an

integral cone; we can find the generators of the dual cone to be v1 = (1, 0, 0), v2 = (0, 1, 0),

v3 = (0,−1, 1) and v4 = (−1, 0, 1). By definition, a lattice point in the dual cone is given

by positive integer linear combinations of these four vectors. It is special in our case that

these four generators vi have their endpoints co-planar.7 It is easy to find the vector u

orthogonal to the plane generated by vi as u = (1, 1, 2). In fact, in this case, the vector u

is precisely the Reeb vector, so the level we are counting is also the R-charge.8

Now, we can see how this 3-dimensional lattice generated by vi projects to the 2-

dimensional lattice. For level one, it is given by four vi, since all of them have vi·(1, 1, 2) = 1.

For the level two, we need to find vectors (x, y, z) such that (1) (x, y, z) =
∑4

i=1 aivi with

ai ≥ 0 and integer; (2) (x, y, z) · (1, 1, 2) = 2 which gives x + y + 2z = 2. From these

conditions, we find the following 9 points:

{(2, 0, 0), (0, 2, 0), (0,−2, 2), (−2, 0, 2), (1, 1, 0), (1,−1, 1), (0, 0, 1), (−1,−1, 2), (−1,−1, 2)}
(4.3)

which is exactly what we find in the dimer model. In general level n should have (n + 1)2

points.

Now let us check this using our Poincaré series, which from eq. (3.17) is

P (x, y, z; C) = − x y (−1 + z)

(−1 + x) (−1 + y) (x − z) (y − z)
. (4.4)

To count the level, notice that the Reeb vector is u = (1, 1, 2), which means that the

R-charges of x, y, z are 1, 1, 2 respectively. In other words, we should replace x → q, y →
q, z → q2, yielding

P (q; C) =
(1 + q)

(1 − q)3
=

∞∑

n=0

(n + 1)2qn ; (4.5)

whereby giving us the required (n + 1)2 counting!

7Note that though the toric diagram always has its vectors in a plane, as guaranteed by the CY condition,

the dual cone is not so guaranteed.
8We remark that our Reeb vector differs in convention from that of [37]. Our (a, b, c) is their (c, a, b).
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In fact we can do better than that. Let us do the following replacement x → xq,

y → yq and z → q2. The expression is changed to

xy(1 − q2)

(1 − qx)(1 − qy)(q − x)(q − y)
= 1 + q

(
x + y +

1

x
+

1

y

)
+ · · · . (4.6)

Comparing this with toric data we can see that x, y represent the Cartan weight of SU(2)L×
SU(2)R global symmetry for the conifold. More explicitly, for the two U(1) × U(1), x, y

carry the charge of U(1)x = U(1)L + U(1)R and U(1)y = U(1)L − U(1)R. To see this let

us consider, for example, M0,1 = A1B1. Because the (U(1)L,U(1)R) charge of A1 and B1

is (1
2 , 0) and (0, 1

2), we get immediately the (U(1)x,U(1)y) charge (1, 0), i.e., the term x.

Similarly, the terms y, 1
x
, 1

y
correspond to the operators M0,1,M−1,0,M0,−1, respectively.

5. Counting gauge invariants: plethystics, multi-trace and syzygies

We have now seen the generating function f which counts single-trace GIO’s of a given

choice of global charges for 3 large families of CY threefold singularities. What about the

multi-trace GIO’s? These are products of combinations of single-traces. We have called

the generating function for counting these, g. We shall now see how g can be obtained

from f using some nice combinatorics. We shall then see how the function which relates f

and g has some remarkable geometrical properties as well.

5.1 The plethystic exponential: from single to multi-trace

Recall that in the above f should really be f∞ bacause we have taken the large N limit.

Similarly, the quantity g we desire is really g∞. Now, we showed in section 2 that for C
3,

the relation between f and g is that of the plethystic exponential, PE (q.v. [53, 54]). This

in fact holds in general:

g(t) = PE[f(t)] := exp

( ∞∑

k=1

f(tk) − f(0)

k

)
. (5.1)

Indeed, recalling eq. (2.6), we summarise the following relations, with the subscripts re-

stored:

g1 = f∞, f∞(t) = PE[f1(t)], g∞(t) = PE[g1(t)] = PE[PE[f1(t)]] . (5.2)

We remark that, even for a list of variables ti=1,...,n, which are used in the refinement of

counting discussed above, the expressions in eq. (5.1) and eq. (5.2) still hold, with obvious

replacement. Namely,

g(t1, . . . , tn) = PE[f(t1, . . . , tn)] := exp

( ∞∑

k=1

f(tk1, . . . , t
k
n) − f(0, . . . , 0)

k

)
. (5.3)

We can derive the statement eq. (5.1) explicitly by series-expansion. Let

f(t) =

∞∑

n=0

antn (5.4)
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be the Taylor expansion of the Poincaré series f∞ = f(t). Thus, an is the number of

independent invariants at (total) degree n. Then, eq. (5.1) gives us

PE[f(t)] = exp

( ∞∑

n=0

an

∞∑

k=1

tnk

k
− a0

∞∑

k=1

1

k

)

= exp

(
−

∞∑

n=0

an log(1 − tn) − a0

∞∑

k=1

1

k

)
.

We see therefore that the f(0) term precisely regularises the sum and we obtain

PE[f(t)] = exp

(
−

∞∑

n=1

an log(1 − tn)

)
=

1
∞∏

n=1
(1 − tn)an

. (5.5)

This expression is now in the standard Euler product form. Upon expansion of PE[f(t)],

we would see that the coefficient for tm is the number of ways of partitioning m, each

weighted by an. This is precisely our required counting, i.e., the number of multi-trace

GIO’s at degree m. Hence, g(t) = PE[f(t)].

We have thus solved problems (1) and (2) posed in the introduction and have the

generating functions f and g for large N . In fact, as before, we can refine our counting.

In the above, we had a single variable t, a dummy variable associated with the total

degree. Where permitted, as discussed in section 3.2.1, we can have a set of variables ti,

one for each U(1)-charge, and an associated multi-degree for these tuples of charges. In

addition, we can introduce one more variable ν, to be inserted into the summand. One

could easily see that upon expansion, the power of ν will actually count how many single-

trace operators are present in each of the terms. In other words, for f∞(t1, . . . , tm) =
∞∑

p1,...,pm=0
ap1,...,pmtp1

1 . . . tpm
m , we have

g̃∞(ti, ν) = PE[f∞] = exp

( ∞∑
k=1

f∞(tk1 ,...,tkm)νk

k

)

=

(
∏

p1,...,pm

(1 − νtp1
1 . . . tpm

m )ap1,...,pm

)−1

;

(5.6)

note that due to the insertion of ν, there is no longer a need to regulate the sum by the

subtraction of f(0, . . . , 0).

5.1.1 The plethystic logarithm

The inverse function of PE is also a fascinating one. It is called the plethystic loga-

rithm [53]; one can in fact write it analytically:

f(t) = PE−1(g(t)) =
∞∑

k=1

µ(k)

k
log(g(tk)) , (5.7)
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where µ(k) is the Möbius function

µ(k) =





0 k has one or more repeated prime factors

1 k = 1

(−1)n k is a product of n distinct primes

. (5.8)

As g∞ = PE[g1], so too does one have the relation f∞ = PE[f1]. Since our basic

generating function is the Poincaré series f = f∞, for which we have had explicit results

in section 3, it is more convenient to write

f1 = PE−1(f∞) . (5.9)

One may ask what this function f1, which we briefly encountered in eq. (2.5), signifies. It

has a remarkable geometrical property!

The plethystic logarithm of the Poincaré series, is a generating series for the relations

and syzygies of the variety!

We exemplify this statement with our familiar example of the Valentiner group from sec-

tion 3.1.2 in the next subsection.

5.1.2 Plethystic logarithm and syzygies

Using eq. (5.7), and recalling the Poincaré (Molien) series f for ∆(27) from eq. (3.11), we

see that

f1 = PE−1

(−1 + t3 − t6

(−1 + t3)3

)
= 2t3 + t6 + t9 − t18 . (5.10)

The r.h.s. terminates and is a polynomial! It is to be interpreted thus: there are 2 degree

3 invariants, 1 degree 6 and 1 degree 9 invariant, these 4 invariants obey a single relation

of total degree 18. Upon inspecting eq. (3.12) and eq. (3.13), we see that this is indeed the

definition of C
3/∆(27) as a variety!

Now, C
3/∆(27), as a hypersurface in C

4, is a complete intersection affine variety (i.e.,

the number of equations is equal to the codimension of the variety in the embedding

space). How does the above work for non-complete intersections? We have an example

readily available: the famous C
3/Z3 = OP2(−3) orbifold. In fact, being an Abelian orbifold,

this is also toric and furthermore, it is also dP0, being a cone over P
2. So we have 3 ways

to compute its Molien series from section 3. Let us use the Molien series. The action is

(x, y, z) → ω3(x, y, z) and we immediately get

f∞(t) = M(t; Z3) =
1 + 7 t3 + t6

(1 − t3)3
, (5.11)

whereby

f1(t) = PE−1[f∞(t)] = 10 t3−27 t6+105 t9−540 t12+3024 t15−17325 t18 +O(t21) . (5.12)
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This is again in accordance with known facts! The equation for this orbifold is 27 quadrics

in C
10, i.e., 10 degree 3 invariants satisfying 27 relations of degree 2× 3 = 6 (q.v. [38, 43]).

We can determine these as follows. The 10 invariants are

y1,...,10 =
{
x3, x2y, xy2, y3, x2z, xyz, y2z, xz2, yz2, z3

}
, (5.13)

obeying the 27 quadrics

{y2
2 − y1y3, y2y3 − y1y4, y3

2 − y2y4, y2y5 − y1y6, y3y5 − y1y7, y2y6 − y1y7, (5.14)

y4y5 − y2y7, y3y6 − y2y7, y4y6 − y3y7, y5
2 − y1y8, y5y6 − y1y9, y2y8 − y1y9,

y6
2 − y2y9, y5y7 − y2y9, y3y8 − y2y9, y6y7 − y3y9, y4y8 − y3y9, y7

2 − y4y9,

y5y8 − y1y10, y6y8 − y2y10, y5y9 − y2y10, y7y8 − y3y10, y6y9 − y3y10, y7y9 − y4y10,

y8
2 − y5y10, y8y9 − y6y10, y9

2 − y7y10} .

Therefore, eq. (5.13) are the 10 primitive invariants of degree 3, obeying 27 syzygies of

degree 6 given by eq. (5.14). According to our rule, this should read 10t3 −27t6. These are

precisely the first two terms of eq. (5.12)! Indeed, because we no longer have a complete

intersection, the plethystic logarithm of the Poincaré series is not polynomial and continues

ad infinitum. What about the 105 and higher terms then, do they mean anything? We

will explain this in section 5.2.

As a final example of the more subtle case of non-complete-intersection varieties, let

us take the C
3/Z5 orbifold, with action (x, y, z) → (ω5x, ω2

5y, ω2
5z). We obtain:

M(t; Z5) =
−1 + t − 3 t3 + t4 − 3 t5 + t7 − t8

(−1 + t)3 (1 + t + t2 + t3 + t4)2
= 1 + 3 t3 + 2 t4 + 7 t5 + 5 t6 + 4 t7 + 11 t8

+9 t9 + 18 t10 + 15 t11 + 13 t12 + 24 t13 + 21 t14 + 34 t15 + O(t)16 , (5.15)

giving us

PE−1[f∞(t)] = 3 t3+2 t4+7 t5−t6−2 t7−13 t8−12 t9−14 t10+14 t11+34 t12+72 t13

+47 t14 + O(t)15 . (5.16)

We can find that the 3 invariants of degree 3, 2 of degree 4, 7 of degree 5 are

y1,...,12 := {x y2, x y z, x z2, x3 y, x3 z, x5, y5, y4 z, y3 z2, y2 z3, y z4, z5} . (5.17)

We can easily find, using Gröbner algorithms, all relations amongst these 12 invariants,

giving us 1 in degree 6 (a quadric in the 3 degree 3 invariants), 2 in degree 7, 13 in degree 8,

12 in deree 9 and 16 in degree 10. All this is in almost in exact agreement with eq. (5.16),

with the only exception being that there are 16 degree 10 relations and not 14. Together

with the issue of the higher terms in the C
3/Z3 case, we now address this discrepancy in

the next subsection.
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5.2 Plethystics: a synthetic approach

We have now witnessed the astounding power of plethystics in the counting problem and

have moreover noted a tantalising fact about the geometry of the variety and the (plethystic

logarithm of) the generating function for the GIO’s in the gauge theory. Let us now attempt

to argue why some of the above examples should work. First we note that the Poincaré

series f , when finally collected and simplified, is always a rational function. In particular

it has a denominator of the form of products of (1 − tk) with possible repeats for k; the

numerator is some complicated polynomial. We will call this the Euler form. The point

is that the coefficient in front of the tk is always unity and we conjecture that this is a

property of the Poincaré series of concern.9

When we are taking the plethystic logarithm of f , due to the explicit expression

eq. (5.5), we are trying to solve the following algebraic problem: find integers bn such

that

f(t) =
1

∞∏
n=1

(1 − tn)bn

, (5.18)

where f(t) is a given rational function in Euler form. Note that PE−1[f(t)] =
∞∑

n=1
bntn,

unlike the Poincaré series herself, need not have all positive bn. Because f(t) has Euler

form, the denominator of eq. (5.18) is immediately taken care of. In other words, because

f(t) has denominator in the form of products of (1 − tk), all positive values of n and bn

are just read off. These are low values of n and correspond, in the Molien case, to some

of the small invariants, including the primitive ones. However, there is still a numerator

in f(t), often of complicated form. This will give negative bn contributions to the r.h.s. of

eq. (5.18), which correspond to the relations.

Take ∆(27) as an example. We need to find bn such that

1 − t3 + t6

(1 − t3)3
=

(
1 − t18

)

(1 − t6) (1 − t9) (1 − t3)2
=

1
∞∏

n=1
(1 − tn)bn

, (5.19)

where we have used the identity
(
1 − t3

) (
1 − t18

)

(1 − t6) (1 − t9)
= 1 − t3 + t6 . (5.20)

This rational identity is crucial and expresses even the numerator of f into Euler form.

Now we can read out the solution: the denominator contributes terms +2t3, +t6 and +t9

while the numerator contributes −t18. Thus PE−1[M(t)] = 2t3 + t6 + t9 − t18. In other

words, there should be 2 degree 3 invariants, 1 each of degrees 6 and 9, obeying a single

relation of degree 18. The fact that the numerator can be factorised into (finite polynomial)

Euler form dictates that the plethystic logarithm of f terminates in series expansion as was

seen in eq. (5.10). The moral of the story is that

9In fact, all Poincaré series we have encountered, orbifold, toric, etc., have this property. We do not

have a rigorous proof of this right now and leave it to the mathematically inclined.
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Findings relations in this language corresponds to finding appropriate factorisations

of the numerator into Euler form.

Of course, not all Poincaré series have polynomial plethystic logarithms. This is just

the statement that not all polynomials afford identities of the type eq. (5.20). In general,

the product on the r.h.s. of eq. (5.18) must be infinite to accommodate those which cannot

be put into finite Euler form. These correspond to non-complete intersection varieties.

Take C
3/Z3, we have

M(t; C3) =
1 + 7 t3 + t6

(1 − t3)3
. (5.21)

Indeed, no rational identity can express 1 + 7 t3 + t6 in finite Euler form so the plethystic

logarithm will not terminate. Now, as promised earlier, we can explain the higher terms

such as the 105 and 540. In this example, there are 10 basic invariants and there are 27

relations amongst them. This explains the first 2 terms in eq. (5.12). This is seen above

because if we were to write 1 + 7 t3 + t6 in Euler form, we would obtain

1 + 7 t3 + t6 =
(1 − t6)27(1 − t12)540 . . .

(1 − t3)7(1 − t9)105 . . .
(5.22)

thus we get the +10t3 term from the (1 − t3)3+7 factor in the denominator and the −27t6

term from the (1 − t6)27 factor in the numerator.

Of course, one finds the 27 relations by finding syzygies among the 10 primitive invari-

ants. The reason we can do this is of course theorem 1 which dictates that we need not

go beyond degree |G| = 3 to find all basic invariants which generate the entire invariant

polynomial ring. Instead, if we found the syzygies for the entire invariant ring, we would

get the higher terms. That is, we should, considering the expansion of the Molien series

1 + 7 t3 + t6

(1 − t3)3
= 1 + 10 t3 + 28 t6 + 55 t9 + 91 t12 + 136 t15 + 190 t18 + · · · , (5.23)

consider all 10 + 28 + 55 + · · · invariants as polynomials in 3 variables and find all their

syzygies; this should give the higher terms. Of course this cannot be done all at once,

but nevertheless we can consider the process stepwise: first, syzygies for 10 of them, then

10+28 of them, etc. In principle, if we only wish to know up to some degree, we only need

to find syzygies for invariants up to that degree. This algorithm is the precise analogue

of the infinite product expansion of eq. (5.22) into Euler form, which serves as successive

approximation to the l.h.s. in eq. (5.22). This also explains the discrepancies in the case

of C
3/Z5 as seen above. In these cases where the Euler product is non-terminating, and

rational identities become infinite products, the syzygies should thereby receive stepwise

corrections. We should be able to arrive at the right answer after some finite number of

steps if we only wish to know the terms up to a desired order.

Let us check up to second order in this example of C
3/Z3 by finding the syzygies

amongst the 10 basic invariants of degree 3 and 28 degree 6 invariants. We find, using [42],

595 relations: 55 of degree 6, 225 of degree 9 and 315 of degree 12. This thus reads

10t3 + 28t6 − 55t6 − 225t9 − 315t12 = 10t3 − 27t6 − 225t9 − 315t12 . (5.24)
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Good, we reproduce the first 2 terms of PE−1[M(t)] and have the next 2 terms. This is

only up to order 2, i.e., finding syzygies among 38 polynomials. At next order, we would

have to find relations among 10 + 28 + 55 = 93 polynomials and correct the t9 and t12

coefficients; the computation becomes increasingly strenuous for the computer.10

5.3 Complete intersections

We see from the preceeding arguments that the most powerful avatar of the intimate

relations between plethystics and syzygies is realised in complete intersections, especially

in single hypersurfaces. We have seen that ∆(27) is one such example of the hypersurface.

The key feature for this class of varieties is that the series for f1 = PE−1[f∞(t)] terminates

and is polynomial. This is nice because if we knew the defining equations and the degrees

of the various pieces, we could re-construct the Poincaré series and find the number of

invariants in the gauge theory! This is independent of whether the variety is orbifold or

toric, but should hold in general. In fact, we do not even need to know what the gauge

theory is! We shall see, in section 6.2, an inverse application of this philosophy, where we

shall construct a variety with desired gauge invariants.

5.3.1 Del Pezzo family revisited

Take a non-orbifold, non-toric, single hypersurface, the famous cubic in P
3; this is the cone

over the 6-th del Pezzo surface. From eq. (3.26) and eq. (5.7), we have

f(t; dP6) =
1 + t + t2

(1 − t)3
⇒ PE−1[f(t; dP8)] = 4t − t3 , (5.25)

which says that there should be 4 linear invariants, obeying 1 cubic relation; precisely the

definition of dP6.

Another illustrative example is dP8; here we shall go beyond projective spaces, but

rather to weighted projective spaces. We shall see that the plethystic logarithm still works.

We know (cf. [55]) that dP8 as a surface is given by a single equation in WP
3
1,1,2,3. Again,

from eq. (3.26) and eq. (5.7), we find

f(t; dP8) =
1 − t + t2

(1 − t)3
⇒ PE−1[f(t; dP8)] = 2 t + t2 + t3 − t6 . (5.26)

This is again correct: 2 degree 1, 1 degree 2 and 1 degree 3, obeying a single degree 6

relation. This can only happen in a weighted projective space, viz., WP
3
1,1,2,3. Thus, our

proposal eq. (3.26) is again confirmed. We note that, upon comparing eq. (5.26) and the

result eq. (5.10) for ∆(27), the f -functions are the same, only with the replacement t → t3.

This does not surprise us, indeed (cf. e.g. [7, 56, 57]) ∆(27) is known to be a special point

in the moduli space of dP8’s.

In fact, all del Pezzo surfaces for n > 4 are complete intersections (cf. e.g., eq. (3.2)

of [55] and also [58]). We check against eq. (3.26) and find complete agreement. For clarity,

let us tabulate these results in table 3. Therefore, for the entire del Pezzo family, members

10This alternative addition of invariants and substraction of relations is reminiscent of the characters of

minimal models and the removal of null-states using the Kac determinant in 2-dimensional conformal field

theories.
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dPn f = f∞(t) f1 = PE−1[f(t)] Defining Equations

5 1+2t+t2

(1−t)3
5 t − 2 t2 2 degree 2 equations in P

4

6 1+t+t2

(1−t)3
4 t − t3 1 degree 3 equation in P

3

7 1+t2

(1−t)3
3 t + t2 − t4 1 degree 4 equation in WP

3
1,1,1,2

8 1−t+t2

(1−t)3
2 t + t2 + t3 − t6 1 degree 6 equation in WP

3
1,1,2,3

Table 3: Fundamental invariant and syzygies of del Pezzo 5 to 8.

dPn f = f∞(t) f1 = PE−1[f(t)] Defining Equations

0 1+7t+t2

(1−t)3
10 t − 27 t2 + 105 t3 − 540 t4 + 3024 t5 + O(t)6 (10|227)

1 1+6t+t2

(1−t)3
9 t − 20 t2 + 64 t3 − 280 t4 + 1344 t5 + O(t)6 (9|220)

2 1+5t+t2

(1−t)3
8 t − 14 t2 + 35 t3 − 126 t4 + 504 t5 + O(t)6 (8|214)

3 1+4t+t2

(1−t)3
7 t − 9 t2 + 16 t3 − 45 t4 + 144 t5 + O(t)6 (7|29)

4 1+3t+t2

(1−t)3
6 t − 5 t2 + 5 t3 − 10 t4 + 24 t5 + O(t)6 (6|25)

Table 4: The fundamental invariant and syzygies for del Pezzo 0 to 3.

0 to 3 are checked by toric methods while 5 to 8 are complete intersections. The only one

remaining is dP4 and from eq. (3.26),

f(t; dP4) =
1 + 3 t + t2

(1 − t)3
= 1 + 6 t + 16 t2 + 31 t3 + 51 t4 + 76 t5 + 106 t6 + 141 t7

+181 t8 + 226 t9 + O(t10) (5.27)

predicts the single-trace GIO counting for this variety. The equation for this variety [51, 58]

is the (non-complete) intersection of 5 quardrics in P
5 (cf. also eq. 5.29 of [27]). Expanding

the plethystic logarithm of f in this case gives

PE−1[f(t; dP4)] = 6 t − 5 t2 + 5 t3 − 10 t4 + 24 t5 − 55 t6 + 120 t7 −O(t8) (5.28)

We see that the first 2 terms are actually correct: refer to table 4 there are 5 degree 2

relations in 6 variables!

For full reference, we tabulate below the other members of the del Pezzo family, these

are non-complete intersections: Here, we have computed these defining equations using

fat-point methods on P
2 [42, 59]. We have used the notation, in the above table, that

(m|pq1
1 . . . pqk

k ) denotes q1 equations of degree p1, q2 equations of degree p2, etc., all in m

variables. The first memeber, dP0, is of course C
3/Z3 as studied in detail in eq. (5.13) and

eq. (5.14). Furthermore, as mentioned when we first presented eq. (3.26), F0 has the same

f(t) as dP1. Indeed, we can study the degree 2 Veronese-Segrè embedding of P
1 × P

1 into

P
8 and see that F0 also has defining equation in 9 variables as (9|220). The precise forms

of these equations, of course, differ from those of dP1. Thus, dP1 and F0 are in different

points of a complex structure moduli space.

– 30 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
0

G ⊂ SU(2) f1 = PE−1[M(t; G)] Defining Equation in C[u, v,w]

Ân−1 t2 + 2tn − t2n uv = wn

D̂n+2 t4 + t2n + t2n+2 − t4n+4 u2 + v2w = wn+1

Ê6 t6 + t8 + t12 − t24 u2 + v3 + w4 = 0

Ê7 t8 + t12 + t18 − t36 u2 + v3 + vw3 = 0

Ê8 t12 + t20 + t30 − t60 u2 + v3 + w5 = 0

Table 5: The fundamental invariant and syzygies for C2 orbifolds.

To compare and contrast, we include the f1 results for the ADE-series addressed in

section 3.1.1; indeed these are all complete intersections - in fact, single hypersurfaces - so

f1, the plethystic logarithm of the the Molien series should be polynomial (see table 5).

5.3.2 Example: the hypersurface x2 + y2 + z2 + wk = 0

Now, let us try another family of complete intersection 3-folds, viz., x2 + y2 + z2 + wk = 0

in C
4. For k = 1, this is just C

3, for k = 2, it is the conifold C. For k > 2, the theory is

studied in [14]. However, for k ≥ 3, [60, 61] recently showed that there is no Sasaki-Einstein

metric, whereby making the AdS/CFT correspondence a little ambiguous here.

For k = 2n even, we have x, y, z being degree n and w being degree 1. From this we

can read out f1 = t + 3tn − t2n. Thus we can calculate that

f∞(k = 2n) = PE[t + 3tn − t2n] =
(1 − t2n)

(1 − t)(1 − tn)3
.

Similarly, for k odd, we have x, y, z being degree k and w, degree 2. From this we can read

out that f1 = t2 + 3tk − t2k and whence

f∞(k) = PE[t2 + 3tk − t2k] =
(1 − t2k)

(1 − t2)(1 − tk)3
, , k odd .

To demonstrate, we list the series expansion of the Poincaré series f∞ for k = 1 to k = 5

and we find

f∞(1) = f∞(t; C
3) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 28t6 + 36t7 + · · ·

f∞(2) = f∞(t; C) = 1 + 4t + 9t2 + 16t3 + 25t4 + 36t5 + 49t6 + 64t7 + · · ·
f∞(3) = 1 + t2 + 3t3 + t4 + 3t5 + 6t6 + 3t7 + 6t8 + 10t9 + 6t10 + · · ·
f∞(4) = 1 + t + 4t2 + 4t3 + 9t4 + 9t5 + 16t6 + 16t7 + 25t8 + 25t9 + 36t10 + 36t11 + · · ·
f∞(5) = 1 + t2 + t4 + 3t5 + t6 + 3t7 + t8 + 3t9 + 6t10 + 3t11 + 6t12 + 3t13 + 6t14 + · · ·

5.4 Refined relations: the conifold revised

In all of the above, we have used the generating function with a single variable t. How does

this all work if everything is refined fully so as to contain a tuple of dummy variables for

the various U(1)-charges? We shall now see that the relations are still explicitly encoded

by f1. We mentioned early on that the F-term relations are automatically built into the

counting. Indeed, for C
3, we do not have these relations - just that x, y, z commute. For

the conifold, we have the simplest demonstration that f1 contains relations.
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Recall the expression for the Poincaré series f∞ in eq. (4.6). Now, let us take the

multi-variate plethystic logarithm [53], which for f∞(t1, . . . , tm) is, recollecting eq. (5.6)

PE−1[f∞(t1, . . . , tm)] =
∞∑

k=1

µ(k)

k
log(f∞(tk1 , . . . , t

k
m)) . (5.29)

The result is

f1 = PE−1

[
xy(1 − q2)

(1 − qx)(1 − qy)(q − x)(q − y)

]
=

q

x
+ q x +

q

y
+ q y − q2 . (5.30)

Indeed, f1 is polynomial because the conifold is complete intersection. There are four

invariants, corresponding to qx, q
x
, qy, q

y
. If we would write just these generators without

any subtractions, this would be merely the result for C
4. Therefore it is not enough.

To put the relation, we notice that (qx)(q/x) = (qy)(q/y) = q2 and therefore we should

subtract one combination of q2. We thus reproduce eq. (5.30). The procedure is simple

and analogous for complete intersections. However, for non-complete intersections, once

we make the subtraction we are taking away too much. We must therefore compensate by

adding those which are subtracted, etc. ad infinitum, just like the non-terminating series

explained in section 5.2.

6. Asymptotics and the Meinardus theorem

We have encountered, in the preceeding discussions, many infinite products of Euler type.

Indeed, we recall that the generating function for multi-trace GIO’s is

g(t) :=
∞∑

n=0

pntn = PE[f(t)] =
1

∞∏
n=1

(1 − tn)an

for f(t) =
∞∑

m=0

amtm . (6.1)

In the case that all an = 1, g(t) is the Euler function, or, up to a factor of t−
1
24 , the

Dedekind η-function. This is our familiar generating function for the number of ways of

partitioning integers. The Hardy-Ramanujan equation gives the asymptotic behaviour of

pn and was what gave rise to the Hagedorn temperature (q.v. [64]). It is, needless to

say, important to find analogous asymptotic behaviours for general an. This would give

micro-state counting for our quiver gauge theories.

Luckily, this generalisation of Hardy-Ramanujan is known. This is a result due to

G. Meinardus [62] (q.v. [63], to whose notation we adhere, for some explicit results).

Meinardus’ theorem states that the asymptotic behaviour of pn in eq. (6.1) is:

pn ∼ C1n
C2 exp

[
n

α
α+1

(
1 +

1

α

)
(AΓ(α + 1)ζ(α + 1))

1
α+1

]
(1 + O(n−C3)) , (6.2)

if the Dirichlet series for the coefficients am of f , defined as

D(s) :=

∞∑

m=1

am

ms
, Re(s) > α > 0 , (6.3)
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converges and is analytically continuable into the strip −C0 < Re(s) ≤ α for some real

constant 0 < C0 < 1 and such that in this strip, D(s) has only 1 simple pole at s = α ∈ R+

with residue A. The constants in eq. (6.2) are

C1 = eD′(0) 1√
2π(α + 1)

(AΓ(α + 1)ζ(α + 1))
1−2D(0)
2(α+1) ,

C2 =
D(0) − 1 − α

2

α + 1
, (6.4)

and C3 some positive constant.

6.1 Example: C and Dedekind η

For example, when all am = 1, we have the usual partition of integers and the Dirichlet

series is just the Riemann ζ-function. The generating function f(t) =
∞∑

m=0
tm is of course

simply 1
1−t

and the geometry is that of the complex line C. Using the above results of

Meinardus, we have

α = 1, A = 1, D(0) = −1

2
, D′(0) = e−

1
2

log(2π); C1 =
1

4
√

3
, C2 = −1 ,

giving us

pn ∼ 1

4
√

3n
e
π

q

2n
3 (1 + O(n−C)) ,

precisely the Hardy-Ramanujan result.

6.2 Example: MacMahon function and a Riemann surface

Next, consider

f(t) =
1 − t + t2

(1 − t)2
, an = n, ⇒ g(t) =

1
∞∏

n=1
(1 − tn)n

.

As PE−1[f(t)] = t + t2 + t3 − t6, this is a complete intersection, given as a hypersurface

of degree 6 in WP
2
1,2,3. The dimension is therefore 1 and is hence a Riemann surface.

The total space is an affine cone over this surface and is of dimension 2. We can embed

WP
2
1,2,3, through a Veronese-Segré map, into P

6 and see that the genus of the Riemann

surface is 1. Alternatively, we can projectivise the weight-one coordinate in WP
2
1,2,3 and

simply obtain a standard elliptic curve. Therefore, the geometry is a cone over a torus!

The generating function g(t) is the well-known MacMahon function [65]. We see that

α = 2, A = 1, D(0) = − 1

12
, D′(0) =

1

12
− log(Gl);

C1 =
e

1
12 ζ(3)

7
36

2
11
36 Gl

√
3π

, C2 = −25

36
, (6.5)

where Gl := e
1
12

−ζ′(−1) ≃ 1.28243 is the Glaisher constant. Hence,

pn ∼ e
1
12 ζ(3)

7
36

2
11
36 Gl

√
3π

n− 25
36 exp

(
3 ζ(3)

1
3

2
2
3

n
2
3

)
. (6.6)
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6.3 Example: our familiar C
3

Returning to something we have encountered earlier, let us attack the C
3 example of

eq. (2.11). We can now find the coefficients dk therein! Using eq. (5.5) we have that

g(t; C
3) = PE[f(t; C

3)] =
1

∞∏
n=1

(1 − tn)an

, an =
1

2
(n + 1)(n + 2) . (6.7)

We can readily see that D(s) = 1
2 (ζ(−2 + s) + 3ζ(−1 + s) + 2ζ(s)). We see that there are

3 poles, at 1,2 and 3. Of course, Meinardus theorem requires that there be only one pole

within a strip. Thus, one must consider one monomial of an at a time and consider the

break-down

g(t; C
3) =

1
∞∏

n=1
(1 − tn)an1

· 1
∞∏

n=1
(1 − tn)an2

· 1
∞∏

n=1
(1 − tn)an3

:= g1(t)g2(t)g3(t),

with an1 = 1
2n2, an2 = 3

2n, an3 = 1. Applying Meinardus and defining gi=1,2,3 :=
∞∑

n=0
pi(n)tn, we have that

p1(n) ∼ e
ζ′(−2)

2

2 2
5
8 15

1
8
n− 5

8 exp

(
2 2

3
4 π

3 15
1
4

n
3
4

)
, p2(n) ∼ e

1
8 ζ(3)

5
24

3
7
24 Gl

3
2
√

2 π
n− 17

24 exp

(
3 (3 ζ(3))

1
3

2 n
2
3

)
,

p3(n) ∼ 1

4·3
3
8
n− 7

8 exp
(

π√
3
n

1
2

)
.

(6.8)

Therefore, we have the convolution p(n) =
∑

r+s+t=n

p1(r)p2(s)p3(t) and since the exponen-

tial growth of p1(n) dominates over the other two, for large n

p(n) ∼ p1(n) . (6.9)

7. Single-trace and multi-trace for finite N

We have, in all preceeding discussions, made the important simplification of taking N ,

the matrix size of the operators, to infinity, whereby decoupling spurious relations which

arise from the lack of commutativity among the matrices of finite size. As mentioned in

the introduction, the problem of counting for finite N is a significantly more difficult one.

Nevertheless, we shall see in this section that the plethystics are still applicable.

We consider the problem of counting BPS states of N = 1 supersymmetric quiver

gauge theories for N finite; N is the number of D3-branes at the tip of the CY cone. We

denote the generating function for multi-trace GIO’s by gN . This problem is of significant

interest, for instance, to studying phase transitions and AdS5 black holes. We already

considered in the previous sections the functions g1 = f∞ and g∞ = PE[g1], and we are

going to propose that it is still quite simple to reconstruct gN in terms of g1.

Suppose the single-trace generating function is given by g1(t) = f∞(t) =
∞∑

n=0
antn, then

we can construct the following function:

g(ν; t) :=

∞∏

m=0

1

(1 − ν tm)am
. (7.1)

– 34 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
0

We immediately notice a strong similarity to the Euler product form of the plethystic

exponential introduced in eq. (5.1), eq. (5.5) and especially eq. (5.6).

We now propose that the finite N multi-trace generating function gN (t) is simply given

by the expansion
∞∑

N=0

gN (t)νN = g(ν; t) . (7.2)

We have 2 limiting cases to check, viz., g1 and g∞, with which we are now quite familiar.

First, we note that

∂νg(ν; t) =

∞∑

k=0

(−ak)(−tk)

(1 − ν tk)ak+1

∞∏

m=0;m6=k

1

(1 − ν tm)am
= g(ν; t)

∞∑

k=0

akt
k

(1 − ν tk)
.

Furthermore, since g(0; t) = 1, we have that ∂νg(0; t) =
∑∞

k=0 akt
k. Therefore, the coeffi-

cient of ν in eq. (7.2) is indeed our g1:

∂νg(ν, q)|ν=0 = g1(q) . (7.3)

Next, let us check whether the N -th coefficient for N → ∞ gives our g∞. This

coefficient can be found by considering the limit11 lim
ν→1

(1 − ν)a0g(ν; t) which extracts the

large N -term in the series expansion. We see that

lim
ν→1

(1 − ν)a0g(ν; t) =
∞∏

m=1

1

(1 − tm)am
≡ PE[g1(t)] . (7.4)

Therefore, our expansion eq. (7.2) has the property that its large N coefficient is the PE

of the linear coefficient, precisely what is required of g∞. We will see in the ensuing text

why the expansion does what it is supposed to.

It is very interesting to compare eq. (5.6) and eq. (7.1). From it we can see that the

parameter ν in eq. (7.1) can have two different interpretations:

I. It counts the number of single-trace GIO’s in a multi-trace GIO for the limit of matrix

rank N → ∞ (here we include the single trace of identity as well) as in eq. (5.6);

II. It counts the number of multi-trace GIO’s for matrix rank N given by the finite power

of ν as in eq. (7.2).

Naively these two counting problems seem to be unrelated, but our proposed formula

eq. (7.1) indicates that they are the same.

Formulae (7.1) and (7.2) give the general solution for counting multi-trace BPS GIO’s,

for a finite number N of D3-branes. In fact, the relation between fN and gN , in general,

still obeys the plethytic exponential as was in eq. (2.8) and eq. (5.1), which we summarise

now (for a list of variables ti):

gN (ti) = PE[fN (ti)] = exp

( ∞∑

k=1

fN (tki ) − fN (0, . . . , 0)

k

)
. (7.5)

11In this paper we always have a0 = 1, since the only operator of vanishing scaling dimension is the

identity. We can see this explicitly in all the examples we have given throughout.
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Symmetric products and moduli spaces. We can in fact re-examine the finite N

counting from another perspective. The standard lore for N D3-branes probing a CY

manifold, X, is that the moduli space of vacua, Mvac(N ;X), is the symmetric product of

N copies of the CY manifold,

Mvac(N ;X) = SN (X) :=
XN

SN
, (7.6)

where SN is the permutation group of N elements. Following our general line in this paper

we can now state two important relations:

1. gN counts multi trace operators for one D3-brane on the symmetric product of N

CY manifolds Mvac(N ;X):

gN (t;X) = g1

(
t;

XN

SN

)
= f∞

(
t;

XN

SN

)
. (7.7)

Alternatively we can think of it as the Poincaré series for Mvac(N ;X). Furthermore,

from the second equality we conclude that gN also counts the single trace operators

on Mvac(N ;X) in the limit in which there are no matrix relations at all, N → ∞.

2. fN counts single trace operators for one D3-brane on the symmetric product of N

CY manifolds Mvac(N ;X):

fN (t;X) = f1

(
t;

XN

SN

)
. (7.8)

Here, we are again using the plethystic exponential relations. In fact, in cases in

which the symmetric product is a complete intersection, fN will be finite and we

can compare the computation of fN using the formulas at the beginning of this

section to independent derivations using the property that the manifold is a complete

intersection. In cases in which the symmetric product is not a complete intersection

we can still use the reasoning of section 5.2. To count the number of generators and

the number of defining relations for the symmetric product.

Actually, eq. (7.7) is the reason why eq. (7.2) works. The far-l.h.s. of the expression

is the generating function for multi-trace at finite N , in line with interpretation II stated

above, while the far-r.h.s. is the single-trace generating function at N → ∞, in accord with

interpretation I. Indeed, multi-trace operators with N single-trace components in X is in

one-to-one correspondence with single-trace operators in SymN (X). Therefore, eq. (7.7)

serves to bridge the two, whereby showing that the expansion coefficients gN indeed count

multi-trace operators at finite N . Having delved into much abstraction, let us be concrete

and now show how these proposals agree with known results.

7.1 Example: the complex line C

The simplest example, as was encountered in section 6.1, is given by

g1(t) = f∞(t; C) =
1

(1 − t)
=

∞∑

n=0

tn . (7.9)
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This is the well known partition function of the half-BPS states in N = 4 SYM (given a

particular choice of the supercharges). This partition function also counts the “extremal”

BPS mesons in toric quivers (i.e. the mesons lying along an edge of the toric cone). In this

case, it should be simple to check the multi-trace generating function is, as dictated by

eq. (7.1) and eq. (7.2), given precisely by

g(ν; t) =

∞∑

N=0

gN (t)νN =

∞∏

m=0

1

(1 − νtm)
. (7.10)

We note that gN is also the partition function of N bosonic one-dimensional harmonic

oscillators. In other words, we are taking a quantum particle whose single particle states

are precisely the integer points in the half-line Z≥0, and considering the placement of N of

such bosons. We can obtain gN for any value of N by Taylor expansion:

gN (t) =
N∏

n=1

1

1 − tn
. (7.11)

In fact, there is another way to see eq. (7.11). Indeed, we have the single-trace gener-

ating function explicitly:

fN (t; C) = 1 + t + t2 + · · · + tN =
1 − tN+1

1 − t
, (7.12)

which encode the operators Tr(Xi) for i = 0, . . . , N . We can take the PE of eq. (7.12) and

using the multiplicative property eq. (5.5), arrive at eq. (7.11) directly.

A few specific cases are at hand. For N = 1,

g1(t) =
1

1 − t
= 1 + t + t2 + · · · + tn + · · · , (7.13)

corresponding to the operators

I; Tr(X); Tr(X)2; . . . ; Tr(X)n; . . . .

For N = 2 we get

g2(t) =
1

(1 − t)(1 − t2)
= 1+t+2t2+2t3+3t4+3t5+4t6+· · ·+(n+1)t2n+(n+1)t2n+1+· · · ,

(7.14)

corresponding to the operators (we have dropped the Tr in the notation without ambiguity):

I; (X); (X)2, (X2); (X)3, (X)(X2); (X)4, (X)2(X2), (X2)2; . . .

. . . ; (X)2n, (X2)(X)2n−2, (X2)2(X)2n−4, . . . , (X2)n−1; . . . .

Indeed g2(t) is the Poincaré series for C
2/Z2 where Z2 acts by the exchange of the two

coordinates (z1, z2) of C
2. It has two generators, one of degree 1 corresponding to a :=

z1 + z2 and another of degree 2, corresponding to b := z1z2. It is easy to see that the other

invariant of degree 2 is represented in terms of these two, z2
1 + z2

2 = a2 − 2b. Similarly, all

other invariants of higher degree can be written in terms of these two.
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For N = 3, we have

g3(t) =
1

(1 − t)(1 − t2)(1 − t3)
(7.15)

= 1 + t + 2t2 + 3t3 + 4t4 + 5t5 + 7t6 + 8t7 + 10t8 + 12t9 + 14t10 + O(t11) ,

corresponding to the operators

I;(X); (X2), (X)2; (X3), (X)(X2), (X)3; (X)(X3), (X2)2, (X)2(X2), (X)4;

(X2)(X3), (X)2(X3), (X)(X2)2, (X)3(X2), (X)5; . . . .

We see that indeed our generating function eq. (7.2) agrees with the explicit counting.

To demonstrate the interplay between plethystics and symmetric products, we now

calculate fN using eq. (7.8). We need to find fN (t; C) = f1(t;
CN

SN
). Now, if we expand an

N -th order polynomial equation in one complex variable x,

PN (x) = xN +

N∑

i=1

aix
N−i =

N∏

j=1

(x − zj), (7.16)

we find that the parameters ai, i = 1 . . . N are symmetric functions of degree i for the

coordinates zj on C
N . That is, ai are coordinates on Mvac(N ; C) = C

N/SN . Furthermore,

there is precisely one generator of degree i for the ring of symmetric functions of the zj

for any i between 0 and N . We can pick the generators to be the coordinates ai. Any

other symmetric function of degree i > N can be written in terms of the ai. Collecting

this together we find f1 for Mvac(N ; C) as in eq. (7.12),

f1(t;
C

N

SN
) =

1 − tN+1

1 − t
= fN (t; C), (7.17)

consistent with our proposal from eq. (7.8) which implies, using the plethystic exponential,

eq. (7.7), thus supporting the proposal for multi-trace.

7.2 Example: the complex plane C
2

Next, we address a slightly more involved example, viz., C
2. This case is quite simple as

well and describes 1/4-BPS operators in U(N) N = 4 SYM. This also describes a subsector

of BPS operators in many toric quivers, namely the operators corresponding to points lying

along a face of the toric cone (this face gives a toric subcone of the toric cone, a cone over

a SUSY 3 cycle), when the SUSY 3-cycle has the topology of S3. Now, we have that

f1(t; C
2) = 2t;

g1(t; C
2) = PE[f1(t; C

2)] =
1

(1 − t)2
=

∞∑

n=0

(n + 1)tn . (7.18)

Formulae (5.6) and (7.1) takes the form

g(ν; t) =
∞∏

m=0

1

(1 − νtm)m+1
= exp(

∞∑

k=0

νk

k(1 − t2k)
) (7.19)
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which looks deceptively similar to the generalized MacMahon function which is used as the

partition function for the topological string on the conifold [66]. Using eq. (7.2), we get

g2(t) =
1 + t2

(1 − t)4(1 + t)2
= 1 + 2t + 6t2 + 10t3 + 19t4 + 28t5 + 44t6 + · · · . (7.20)

We report the R-charge 3 GIO’s, corresponding to the term 10t3. We see that indeed there

are 10 = 2 + 3 + 3 + 2 of them:

(X2)(X), (X)3; (X2)(Y ), (X)(XY ), (X)2(Y ); [X ↔ Y ] .

Next, for R-charge 4 GIO’s, we see that there are indeed 19 = 3 + 4 + 5 + 4 + 3 them:

(X2)2, (X2)(X)2, (X)4;

(X2)(X)(Y ), (X)2(XY ), (X2)(XY ), (X)3(Y );

(X2)(Y 2), (X2)(Y )2, (X)2(Y 2), (X)(XY )(Y ), (X)2(Y )2;

[X ↔ Y ]

The moduli space of vacua for this case is (C2)2/Z2 where the Z2 acts as exchange of the

two coordinates. It is a complete intersection and has

f1(t; (C
2)2/Z2) = f2(t; C

2) = 1 + 2t + 3t2 − t4. (7.21)

7.3 Example: the conifold

The single trace GIO’s for the conifold are given, recalling eq. (4.5), by

g1(t) =
1 + t

(1 − t)3
=

∞∑

n=0

(n + 1)2tn . (7.22)

From formula (7.1) we get

f2(t) =
1 + t + 7 t2 + 3 t3 + 4 t4

(1 − t)3 (1 − t2)3
= 1+4t+19t2 +52t3 +134t4 +280t5 +554t6 + · · · , (7.23)

corresponding to the operators (again, we drop the Tr for brevity):

I; (Mi,j); . . . . (7.24)

At R-charge 2 we have 9 single-trace GIO’s (cf. figure 7) and 10 double-trace GIO’s, given

explicitly by:

(M0,1M0,1) (M0,1M1,0) (M1,0M1,0)

(M0,1M−1,0) (M0,1M0,−1) = (M1,0M−1,0) (M1,0M0,−1)

(M−1,0M−1,0) (M−1,0M0,−1) (M0,−1M0,−1) .

(7.25)

and
(M0,1)(M0,1) (M0,1)(M1,0) (M1,0)(M1,0)

(M0,1)(M−1,0) (M0,1)(M0,−1), (M1,0)(M−1,0) (M1,0)(M0,−1)

(M−1,0)(M−1,0) (M−1,0)(M0,−1) (M0,−1)(M0,−1) .

(7.26)

We emphasize that all these GIO’s have vanishing mesonic charge, we are not counting the

BPS operators such as det(A).
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7.4 Refinement: multicharges at finite N

As with the refinement of the charges discussed insection 3.2.1, it is simple to generalize

the arguments of the previous subsection to partition functions g1 depending on more than

one variables, arising for instance from CY cones with isometry U(1)2 or U(1)3.

Consider a toric CY cone whose integer points are described by the set C. The single

particle states are described by the generating function

g1(t1, t2, t3) =
∑

n,m,r∈C

tn1 tm2 tr3 . (7.27)

Every point in C contributes once to g1, i.e., we are considering a quantum particle whose

states are precisely the integer points in the toric cone. The multi-trace generating function

gN (t1, t2, t3), in analogy with eq. (7.1), is given by

g(ν, ti) =
∑

N

gN (ti)ν
N =

∏

n,m,r∈C

1

(1 − νtn1 tm2 tr3)
= exp

( ∞∑

k=1

νk

k
g1(t

k
1 , t

k
2 , t

k
3)

)
. (7.28)

The coefficients gN (ti) can be interpreted as the multi-particle partition function of N

boson whose single particle states are given by the integer points of C.

7.4.1 The conifold reloaded

Recalling eq. (4.4), the generating function g1 is given by:

g1 =
xy(1 − q2)

(1 − qx)(1 − qy)(q − x)(q − y)
(7.29)

= 1 + q(x + y +
1

x
+

1

y
) + q2(1 +

1

x2
+ x2 +

1

y2
+ y2 + xy +

1

xy
+

x

y
+

y

x
) + · · · .

We can identify the charges (q, x, y) for following four operators

M0,1 = (1, 1, 0), M0,−1 = (1,−1, 0), M0,1 = (1, 0, 1), M0,−1 = (1, 0,−1) .

Therefore, the generating function is, according to eq. (7.28),

g(ν; q, x, y) =
1

(1 − ν)

1

(1 − νqx)(1 − νqy)(1 − ν q
x
)(1 − ν q

y
)

1

(1 − νq2)(1 − νq2x2)(1 − ν q2

x2 )

1

(1 − νq2y2)(1 − ν q2

y2 )(1 − νq2xy)(1 − ν q2

xy
)(1 − ν q2x

y
)(1 − ν q2y

x
)

.

Now we try to apply above result. For N = 1 case we find the

g1 = 1 + q

(
1

x
+ x +

1

y
+ y

)
+ q2

(
1 +

1

x2
+ x2 +

1

y2
+

1

x y
+

x

y
+

y

x
+ x y + y2

)
+ · · · ,

which has obvious correspondence with the variables Mi,j. For N = 2, we get the following

expansion up to R-charge two

g2 = 1+ q

(
1

x
+ x +

1

y
+ y

)
+ q2

(
3 +

2

x2
+ 2x2 +

2

y2
+

2

x y
+

2x

y
+

2 y

x
+ 2x y + 2 y2

)
.

Again, it is easy to find the mapping between the terms here and operators in eq. (7.25)

and eq. (7.26).
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7.5 Theories with only U(1)2 symmetry

We can also start from a theory with only U(1)2 symmetry, whose Poincaré series is given

by

g1(t1, t2) =
∑

n,m≥0

am,ntn1 tm2 . (7.30)

Using this we can find the generating function given by

g(ν, ti) =
∑

N

gN (ti)ν
N =

∏

n,m≥0

1

(1 − νtn1 tm2 )am,n
= exp

( ∞∑

k=0

νk

k
g1(t

k
1 , t

k
2)

)
. (7.31)

8. Conclusions and prospects

In this paper we have considered the 1/2-BPS operators of generic superconformal quiver

gauge theories, living on N D3-branes probing the tip of a Calabi-Yau (CY) cone. It

is shown how to construct the explicit generating functions that count the scalar BPS

operators. We have discussed in great detail various classes of CYs (orbifolds, toric varietes,

del Pezzo’s and complete intersections, even geometries for which the gauge theory is not

yet known), providing a simple bridge (the “plethystic exponential”) between the algebraic

geometry of the CY and the generating functions of the BPS states.

The plethystics directly relate three different generating functions: (1) the defining

equations of the CY (syzygies) as well as the moduli space of vacua, (2) the single-trace

operators and (3) the multi-trace operators. Beautiful structures thus emerge, exhibiting

a rich inter-play between quiver gauge theories, algebraic geometry, combinatorics and

analytic number theory. This intricate framework allows us to solve the 3 problems posed

in the introduction, whereby realising our wish-list.

There are a number of directions that could be pursued for future work. Let us discuss

some of them. We only considered the subset of operators with vanishing baryonic charges.

For instance, for the conifold we did not include, in the counting, the operator det(A). It

would be nice to find the partition functions including the baryonic charge, that may be

compared to analogous computations on the string, AdS5 × X5, side.

A possible continuation of our work could be to extend the study of chiral 1/2-BPS

operators in N = 1 quivers to consider also 1/2-BPS operators with space-time angular

momenta and 1/2-BPS fermionic operators. This would give partition functions depending

on additional charges and would, for instance, enable a computation of the BPS index in

quiver gauge theories, see [67 – 70].

Another exension would be to consider 1/4-BPS operators, annihilated only by one

supercharge. We remark that we are studying 1/2-BPS operators in N = 1 gauge theories

annihilated by 2 out of the 4 supercharges Q. These are the analogues of 1/8-BPS operators

(annihilated by 2 out of the 16 supercharges) in N = 4 SYM. It would be very interesting

to extend the study to 1/4-BPS operators of quivers (annihilated by only 1 supercharge Q,

– 41 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
0

analogous to 1/16-BPS ops in N = 4 SYM).12 One possible outcome, for instance, could be

a comparison with entropy counting of the recently constructed AdS5 SUSY black holes.13

In N = 4 SYM an interesting problem is whether there is a change in the number

of BPS operators changing the coupling. At zero coupling one expects more BPS states.

Here, there is a precisely analogous question. It was shown in [28] that, in the moduli

space of SCFTs corresponding to a given quiver gauge theory, there is a special point with

enhanced chiral ring.14 It was observed in [28] that at this special point, the growth of the

number of single-trace, N = ∞, BPS mesons is exponential instead of that quadratic (as is

the case on generic points of the moduli space of SCFTs). It would be interesting to study

further this mechanism, that could lead at finite temperature to phase transitions.

On the gravity/string side of AdS/CFT, we should also find the same partition func-

tions. For single-trace operators the result is well-known. The interesting case is multi-trace

at finite N . One way to reproduce the gN should be counting Giant Gravitons (GG’s) in

AdS5 × X5. There are studies of GG’s in AdS5 × S5 and AdS5 × T 1,1 [71]. In the case

of S5, one considers the classical moduli space of GG’s and is led to study N classical

non-interacting particles, whose single particle phase space is C
3. Quantizing the multi

particle phase space one gets N bosons whose single particle states are the integer points

of the toric cone of C
3. The partition function is precisely the finite N partition function

of 1/8-BPS ops in N = 4 SYM. In generic toric quivers, for instance, one should find the

result of the end of section 7:

∑

N

gN (ti)ν
N =

∏

n,m,r∈C

1

(1 − νtn1 tm2 tr3)

A different approach is [72], where they consider “dual GG’s”, i.e., D3-brane wrapping

an S3 inside AdS5, and moving along a trajectory in X5. For generic Sasaki-Einstein

manifolds X5, we conjecture that these states are BPS if and only if the trajectory is a

BPS geodesic. We already know that single-trace BPS mesons are the quantization of such

BPS geodesics (see [28]), so the final result should be a simple outcome of the use of the

plethystic exponential on the gravity side.
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[52] M. Aganagic, A. Karch, D. Lüst and A. Miemiec, Mirror symmetries for brane configurations

and branes at singularities, Nucl. Phys. B 569 (2000) 277 [hep-th/9903093];

[53] J.M.F. Labastida and M. Mariño, A new point of view in the theory of knot and link

invariants, math.QA/0104180.

[54] E. Getzler and M.M. Kapranov, Modular operads, dg-ga/9408003.

[55] W. Lerche, P. Mayr and N.P. Warner, Non-critical strings, del Pezzo singularities and

Seiberg-Witten curves, Nucl. Phys. B 499 (1997) 125 [hep-th/9612085].

[56] H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007)

106 [hep-th/0508089].

[57] D. Berenstein, V. Jejjala and R.G. Leigh, The standard model on a D-brane, Phys. Rev. Lett.

88 (2002) 071602 [hep-ph/0105042];

[58] R. Hartshorne, Algebraic geometry, Graduate texts in mathematics, 52 Springer-Verlag

Germany.

[59] B. Harbourne, Problems and progress: survey on fat points in P2, math.AG/0101112.

[60] J.P. Gauntlett, D. Martelli, J. Sparks and S.-T. Yau, Obstructions to the existence of

Sasaki-Einstein metrics, Commun. Math. Phys. 273 (2007) 803 [hep-th/0607080].

[61] D. Conti, Cohomogeneity one Einstein-Sasaki 5-manifolds, Commun. Math. Phys. 274

(2007) 751 [math.DG/0606323].

[62] G. Meinardus, Asymptotische aussagen über partitionen, Math. Z. 59 (1954) 388.

[63] A.A. Actor, Infinite products, partition functions, and the Meinardus theorem, J. Math. Phys.

35 (1994) 5749.

[64] M. Green, J. Schwarz and E. Witten, Superstring theory, Cambridge University Press,

Cambridge U.K. (1987).

[65] H. Baker, Percy Alexander MacMahon, J. London Math. Soc. 5 (1930) 305;

A. Okounkov, N. Reshetikhin and C. Vafa, Quantum Calabi-Yau and classical crystals,

hep-th/0309208.

[66] N. Halmagyi, A. Sinkovics and P. Sulkowski, Knot invariants and Calabi-Yau crystals, JHEP

01 (2006) 040 [hep-th/0506230].

[67] C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories,

Nucl. Phys. B 747 (2006) 329 [hep-th/0510060].

– 46 –

http://jhep.sissa.it/stdsearch?paper=07%282005%29021
http://jhep.sissa.it/stdsearch?paper=07%282005%29021
http://arxiv.org/abs/hep-th/0412279
http://jhep.sissa.it/stdsearch?paper=08%282005%29024
http://arxiv.org/abs/hep-th/0502043
http://jhep.sissa.it/stdsearch?paper=08%282005%29054
http://arxiv.org/abs/hep-th/0503177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB621%2C288
http://arxiv.org/abs/hep-th/0505259
http://jhep.sissa.it/stdsearch?paper=08%282003%29058
http://arxiv.org/abs/hep-th/0209228
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB569%2C277
http://arxiv.org/abs/hep-th/9903093
http://arxiv.org/abs/math.QA/0104180
http://arxiv.org/abs/dg-ga/9408003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB499%2C125
http://arxiv.org/abs/hep-th/9612085
http://jhep.sissa.it/stdsearch?paper=01%282007%29106
http://jhep.sissa.it/stdsearch?paper=01%282007%29106
http://arxiv.org/abs/hep-th/0508089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C071602
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C071602
http://arxiv.org/abs/hep-ph/0105042
http://arxiv.org/abs/math.AG/0101112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C273%2C803
http://arxiv.org/abs/hep-th/0607080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C274%2C751
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C274%2C751
http://arxiv.org/abs/math.DG/0606323
http://arxiv.org/abs/hep-th/0309208
http://jhep.sissa.it/stdsearch?paper=01%282006%29040
http://jhep.sissa.it/stdsearch?paper=01%282006%29040
http://arxiv.org/abs/hep-th/0506230
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB747%2C329
http://arxiv.org/abs/hep-th/0510060


J
H
E
P
1
1
(
2
0
0
7
)
0
5
0

[68] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super

conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251].

[69] Y. Nakayama, Index for orbifold quiver gauge theories, Phys. Lett. B 636 (2006) 132

[hep-th/0512280];

Y. Nakayama, Index for supergravity on AdS5 × T 1,1 and conifold gauge theory, Nucl. Phys.

B 755 (2006) 295 [hep-th/0602284];

A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on

AdS5 × T 11: predictions on N = 1 SCFT’s, Phys. Rev. D 61 (2000) 066001

[hep-th/9905226];

S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006

[hep-th/9807164].

[70] I. Biswas, D. Gaiotto, S. Lahiri and S. Minwalla, Supersymmetric states of N = 4 Yang-Mills

from giant gravitons, hep-th/0606087.

[71] A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP 11 (2000) 027

[hep-th/0010206];

D. Berenstein, C.P. Herzog and I.R. Klebanov, Baryon spectra and AdS/CFT

correspondence, JHEP 06 (2002) 047 [hep-th/0202150];

C.E. Beasley, BPS branes from baryons, JHEP 11 (2002) 015.

[72] G. Mandal and N.V. Suryanarayana, Counting 1/8-BPS dual-giants, JHEP 03 (2007) 031

[hep-th/0606088].

– 47 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C275%2C209
http://arxiv.org/abs/hep-th/0510251
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB636%2C132
http://arxiv.org/abs/hep-th/0512280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB755%2C295
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB755%2C295
http://arxiv.org/abs/hep-th/0602284
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C066001
http://arxiv.org/abs/hep-th/9905226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C025006
http://arxiv.org/abs/hep-th/9807164
http://arxiv.org/abs/hep-th/0606087
http://jhep.sissa.it/stdsearch?paper=11%282000%29027
http://arxiv.org/abs/hep-th/0010206
http://jhep.sissa.it/stdsearch?paper=06%282002%29047
http://arxiv.org/abs/hep-th/0202150
http://jhep.sissa.it/stdsearch?paper=11%282002%29015
http://jhep.sissa.it/stdsearch?paper=03%282007%29031
http://arxiv.org/abs/hep-th/0606088

